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Fig. 1: The invis interface. The scatterplot shows a projection of high-dimensional RNA sequences; sequence maps enable inspec-
tion of nucleotide-level patterns. invis is the first tool for interactive exploration of sequences from in vitro selection experiments.

Abstract— In vitro selection and evolution is a powerful method for discovering RNA molecules based on their binding and catalysis
properties. It has important applications to the study of genetic variation and molecular evolution. However, the resulting RNA
sequences form a large, high-dimensional space and biologists lack adequate tools to explore and interpret these sequences. We
present invis, the first visual analysis tool to facilitate exploration of in vitro selection sequence spaces. invis introduces a novel
configuration of coordinated views that enables simultaneous inspection of global projections of sequence data alongside local regions
of selected dimensions and sequence clusters. It allows scientists to isolate related sequences for further data analysis, compare
sequence populations over varying conditions, filter sequences based on their similarities, and visualize likely pathways of genetic
evolution. User feedback indicates that invis enables effective exploration of in vitro RNA selection sequences.

1 INTRODUCTION

The study of genetic evolution is an integral part of molecular biology
research, which seeks to understand biological processes and sources
of diversity on Earth. One important question in molecular biology
and biochemistry has been whether genetic research can be possible
without the use of living organisms [7]. In vitro selection is a con-
firming response to this question, an experimental method for scien-
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tists to biochemically (i.e., synthetically) simulate the Darwinian se-
lection and evolution at the molecular level, in “fast-forward”, under
controlled conditions. With rapid cycles of growth and selection in a
cell-free test tube, in vitro selection allows scientists to synthetically
create large pools of RNA or DNA sequences (libraries) in which they
then search for functional molecules. These large libraries can contain
as many as 1015 unique sequences [36].

Since the sequences from in vitro selection are nucleic acid chains,
they can be analyzed using high-throughput sequencing (so-called
“next generation” sequencing). This enables the detection and geno-
typing of millions of individual molecules with current technology.
Importantly, it allows researchers to assess questions of how functional
sequences are distributed in the space of all possible sequences, and
how this distribution enables the evolution of novel forms in biology.

However, sequence spaces from in vitro selection experiments are
large and high dimensional by design, making exploration and inter-
pretation difficult. Visual analysis of these datasets is typically limited



to sequence browsing tools and static plots. While useful, these fall
short of facilitating basic analysis tasks such as understanding how en-
vironmental changes affect selection, exploring the direction of geno-
typic change due to selection, identifying important mutations and se-
quences, and exploring possible pathways of evolution from an initi-
ating reference sequence.

In response we present invis, the first visual analysis tool that sup-
ports interactive exploration of in vitro RNA selection sequence spaces
(Figure 1). invis integrates a novel configuration of coordinated views,
enabling simultaneous inspection of global projections of sequence
data alongside local regions of selected dimensions and sequence clus-
ters. It supports data analysis by allowing scientists to isolate related
sequences for further analysis, compare sequence populations over
varying conditions and time, filter sequences based on their similar-
ities, and also visualize likely pathways of sequence evolution.

invis leverages an under-utilized approach to population-scale ge-
nomic data visualization. Existing tools focus on visualization of ge-
nomic features such as correlations (e.g., linkage disequilibrium), vari-
ant histograms and allele frequencies. In contrast, invis directly visual-
izes the sequence space and integrates these views with feature space
visualizations. User feedback indicates that invis uniquely supports
exploration of in vitro RNA selection sequences. Crucially, it frees
scientists from complex computational work, helping them focus on
biological questions.

The rest of the paper is structured as follows. We first review rel-
evant biology to provide context and to help readers without a back-
ground in biology. We then discuss related work in visualization of
biological sequences and multidimensional data. Next, we describe
the design of invis, including task analysis, visual encoding, and in-
teraction. We present initial feedback on invis through a pair of use
cases. Finally, we conclude with a discussion of future applications
and larger opportunities for population-scale sequence visualization.

2 BIOLOGICAL BACKGROUND

Cells are the building blocks of life on earth. Within every cell is a
long chain-like molecule called deoxyribonucleic acid (DNA), which
encodes the information required for the cell to function. DNA is com-
posed of four types of molecules called nucleotide bases: adenine (A),
cytosine (C), guanine (G), and thymine (T). A string of these bases
forms a DNA molecule and is called a sequence. Ribonucleic acid
(RNA) has a molecular structure similar to DNA and has the same
nucleotide bases with the exception of uracil (U) replacing thymine.
DNA exerts control on a cell and sustains its function in a contin-
ual flow of encoded information: regions of DNA are transcribed into
RNA, and RNA is translated to produce proteins. Transcribed RNAs
and proteins then perform the work of the cell. Dubbed the central
dogma by Francis Crick, this flow of information is the fundamental
thesis of modern biology and is common to all cells and organisms,
despite their great diversity.

DNA sequencing is the process of deducing the order of nucleotides
in a DNA molecule. Analysis of DNA sequences is important for un-
derstanding biological processes, bases of diseases, and variation be-
tween and within species. The first two major sequencing methods
were Maxam-Gilbert [22] and Sanger (chain-termination method) [28]
sequencing. As sequencing long strands of DNA with these methods
has proven impractical, shotgun sequencing methods cut long strands
into smaller, overlapping fragments. These overlapping fragments are
sequenced using the chain-termination method and reassembled to ob-
tain the sequence of the initial long strand [23]. Shotgun sequencing
and related variants enable large-scale genome sequencing, and are
critical enabling technologies behind the Human Genome Project [9].
High-throughput RNA sequencing is typically done by first enzymati-
cally copying the RNA sequence to the corresponding DNA sequence
and then performing DNA sequencing.

Biochemical methods have played a central role in the molecu-
lar biology revolution of the last fifty years. Whether genetic re-
search is possible without the use of living organisms has been an
important question in biology and biochemistry [7]. In the 1960s, re-
searchers showed that Darwinian evolution could indeed operate in

cell-free tubes, exploiting the fact that RNA both stores genetic in-
formation (genotype) like DNA and catalyzes chemical reactions like
proteins (phenotype). Note that the primary goal of genetic analysis
is to associate genotype and phenotype. Early in vitro experiments
eventually became practical with the development of in vitro replica-
tion and the invention of polymerase chain reaction (PCR) combined
with improvements in techniques for isolating, directing, and search-
ing molecules in a large collection of sequences.

In vitro selection is essentially an experimental method for discov-
ering rare functional RNA or DNA molecules contained within large
pools of sequences. The technique relies on the fact that 1) biologi-
cal functions change as biological sequences change, 2) rare functions
can be found if enough sequences are tested, and 3) rare functional
sequences can be isolated and increased in frequency to a more easily
detectable level. The process begins by building a pool of sequences.
These starting sequences can be constructed by making random nu-
cleotide changes to sequences found in nature, or by synthesizing non-
natural or completely random collections of sequences.

Next, sequences are separated based on their ability to catalyze a
chemical transformation (ribozymes) or bind a specific target molecule
(aptamers). Several strategies can be used to separate (select) the de-
sired molecules. Two common strategies are self-modification and im-
mobilization. For the self-modification strategy, a functional RNA or
DNA molecule that performs the desired task changes in a detectable
way. For example, the molecule could become smaller (self-cleavage
function) or larger (ligation function), or become attached to a visible
molecule such as a fluorescent or radioactive molecule. For the immo-
bilization strategy, typically a target molecule is chemically attached
to a solid support, and the pool of RNA or DNA is allowed to bind
to this, then rinsed. RNA or DNA that bind to the target molecule
stay, and those that cannot are rinsed away. The bound RNA or DNA
molecules are then released by changing the rinsing conditions. We
refer readers to [36] for further details on in vitro selection.

3 RELATED WORK

We now discuss two strands of prior work relevant to invis: genomic
sequence visualization and multidimensional data visualization.

3.1 Genomic Sequence Visualization

Although sequencing technology has evolved rapidly, the primary vi-
sual encoding scheme for DNA sequences has remained the same: lin-
ear (or circular) track ideograms.

There are several tools for browsing individual genomes and related
data. Both web-based and desktop genome browsers typically use lin-
ear track representations of genomes and associated data. Web-based
browsers such as the UCSC Human Genome Browser [18] and En-
sembl [32] are typically used for locally inspecting, analyzing, and
comparing genomic features. These tools often come with curated
annotations and they function like archival repositories, allowing re-
searchers to validate and compare their findings with the existing liter-
ature. Existing web-based browsers are heavyweight and can be cum-
bersome for basic viewing interactions. In response, several desktop
genome browsers address some of the performance limitations of cur-
rent web-based browsers. These include IGV [26], GenomeView [2],
Savant [12] and Artemis [27].

Comparative analysis is an important part of genomic research.
Quantifying what is conserved and what has changed within and
across genomes helps researchers understand biological processes
as well as sources of normal or abnormal variation. Several tools
have been developed using chromosome-wise track representations
to provide a global picture of structural variants or rearrangements
in genomes [19, 24, 34]. Circos [19] has become increasingly popu-
lar in the genetics community, particularly for generating high quality
figures for publication; however, the generated visualizations lack in-
teractivity. Cinteny [34] uses chromosome-wise linear ideograms for
visualizing synteny: the conservation of genetic loci between chromo-
somes of two genomes. Neither Circos nor Cinteny supports multi-
scale exploration of genomic features. In contrast, MizBee [24] is an
interactive, multi-scale genome synteny browser that uses both circular



and linear track representations. For a thorough discussion of genome
visualization tools, we refer readers to a review by Nielsen et al. [25].

The work discussed above is a representative set of tools designed
for viewing a small number of long sequences (typically only one).
There are also visualization tools that support population scale analy-
sis at some level (e.g., [12, 5]). These tools, however, invariably fo-
cus on visualization of population feature space, such as linkage dis-
equilibrium, variant histograms, and allele frequencies. Despite the
increasing number of large-scale genomic datasets, we lack interac-
tive visual analysis tools that allow users to explore populations in the
sequence space. This task is currently performed by computing high-
dimensional projections using tools such as Matlab and R, and then
looking at static plots.

invis differs from other sequence visualizations by allowing both lo-
cal and global interactive exploration of sequence populations. Unlike
previous work, invis directly depicts the sequence space.

3.2 Multidimensional Data Visualization

Genomic sequences are long strings of letters representing nucleotide
bases. In this sense, visualization of RNA sequence populations is
essentially a large-scale, multidimensional data visualization problem.
Multidimensional data are ubiquitous across different domains, from
genomics to finance. The general goal is to understand the relations
within and between dimensions as well as the structure of the high-
dimensional space determined by these relations.

Visualization techniques for multidimensional data include scatter-
plots [8], scatterplot matrices [10], parallel coordinates [15], radar
plots, dense pixel displays [17], and dimensional stacking [20]. Since
these visualizations have limited use as static graphics, many tools for
multidimensional visualization (e.g., [3, 4, 33, 35]) also include inter-
action techniques such as filtering, zooming, and brushing & linking.

invis uses a scatterplot to provide a global view of sequence popu-
lations. Planar 2D layouts of high-dimensional data can be obtained
by interactively choosing two dimensions to show, or by applying di-
mensionality reduction techniques to project the data to 2D. A number
of earlier research projects use low-dimensional projections for ex-
ploratory data analysis (e.g., [16, 29, 30]).

invis builds on this prior work in its basic visual representations and
interactions. However, it differs in using a novel configuration and co-
ordination of these representations and interactions to facilitate simul-
taneous exploration of global sequence space along with nucleotide
bases of individual and aggregated sequences.

invis also introduces a new dynamic filtering technique that extracts
“epsilon” neighborhoods of points based on distances in the original,
unprojected space. Our approach has several advantages. First, it al-
lows multi-scale exploration of the data in manner that is more robust
to noisy data. Second, it enables the user to assess the accuracy of the
dimensional projection. Third, it helps users test hypotheses regard-
ing evolutionary paths between data points under different scales of
connectivity.

4 DATA PREPARATION

The initial reference sequences used in in vitro selection experiments
can be constructed by randomizing sequences found in nature or
by synthesizing non-natural sequences. Usually, sequences are se-
lected based on their ability to catalyze a chemical transformation (ri-
bozymes) or bind a specific target molecule (aptamers).

We obtained the data used in this paper from in vitro selection of
a catalytic activity derived from intronic self-splicing, a natural pro-
cess. The starting sequence was an RNA intron that catalyzes its own
excision from a tRNA in a bacterium. This activity can be selected in
vitro because RNA molecules capable of catalyzing this reaction can
ligate a short piece of a substrate oligonucleotide to their own terminus
in a cell-free biochemical reaction. Random nucleotide changes were
made to the starting sequence to produce a population of sequences
with an average of six nucleotide changes per molecule. Samples of
this population (∼ 1012 molecules) were allowed to react with a sub-
strate oligonucleotide, and functional sequences were retained.

Functional sequences were isolated in three separate reactions that

Fig. 2: Sequence maps in invis. The initial heat map compares a cur-
rently selected sequence (top) with a reference sequence (bottom). The
other sequence maps use stacked bars to visualize the frequencies of
the four nucleotide bases within an RNA population. The frequency of
nucleotides matching the reference sequence value at a given position
is visualized with a bar stacked above the baseline. Frequencies for
the remaining nucleotides are stacked below the baseline.

had different concentrations of magnesium (2 mM, 10 mM and 25
mM). Magnesium stabilizes the folded structure of active molecules,
and increasing concentrations of magnesium should allow molecules
with destabilizing mutations to remain functional. The nucleotide se-
quence of the retained functional molecules were identified through
next generation sequencing (Roche 454 platform). Several thousands
of individual molecules (i.e., “reads” or sequences) were obtained for
each magnesium concentration.

We aligned these reads with the reference read (wild type) using a
pairwise alignment package [13] and filtered out the sequences whose
length was outside the range [l−0.5σ , l +0.5σ ], where l is the length
of the reference sequence and σ is the standard deviation of the lengths
of all the sequences in the experiment. After this initial processing,
we had about 19K sequences of length 186 for the four populations
(pre-selection, 2 mM, 10 mM and 25 mM) combined. We numeri-
cally encoded the sequences as A=1, G=2, T=3, C=4 and gaps (de-
noted with -) with 0. For example, the sequence ACG--TA- became
a vector of values (1,4,2,0,0,3,1,0). Next, we computed the pair-
wise Hamming distance between each sequence to use in the filtering
interactions discussed in Section 5.2.3. We finally computed a pla-
nar projection (embedding) by running principal component analysis
(PCA) on the numerically encoded sequence data [14].

We observed that using different numerical encodings, including
binary representations where all the bases have the same numerical
“weight”, does not affect the structure of projection significantly. Sim-
ilarly, using multidimensional scaling (MDS) [14] on the Hamming
distance matrix provides a projection very similar to the projection
obtained using PCA. We further discuss the effects of numerical en-
coding on two-dimensional layout in Section 6.

5 THE DESIGN OF invis

In our collaboration with biologists, we identified four high-level anal-
ysis tasks that they would like to perform on the sequenced RNA data
from in vitro selection experiments:

1. Separate functional from non-functional sequences.

2. Identify individual mutations, groups of mutations, or entire se-
quences that are frequent within the functional population.

3. Recover unique, independent solutions to the function by subdi-
viding the functional population.

4. Reconstruct evolutionary trajectories between sequences.

We now discuss the design of visual representations and interaction
techniques in invis to support these biological data analysis tasks.



ε=1

Fig. 3: ε-graph construction with ε = 1 (ε1-graph). An ε-graph of a
sequence collection is a graph obtained by putting an edge between
every sequence within a distance of ε from each other.

5.1 Visual Encoding

We use three basic visual representations in invis: scatterplots of pro-
jected sequences and two forms of “sequence map”. We use heat maps
for one-to-one sequence comparison, and stacked bars for showing
empirical nucleotide frequencies.

5.1.1 Scatterplots of Sequence Populations

invis uses scatterplots to give a global overview of the sequence space
of populations (Figure 1). By using a position encoding, the strongest
of visual cues, scatterplots allow viewers to examine both clusters and
outliers. Each sequence is drawn as a circular node in the plane and
filled with a color identifying its population of origin. The layout is
obtained using PCA, which provides a planar approximation to the
high-dimensional sequence space and its structures.

5.1.2 Sequence Maps

We developed two types of “sequence map” to convey data at the level
of individual nucleotide bases: a heat map for one-to-one sequence
comparison and stacked bars for comparing population-level base pair
frequencies. The primary function of the heat map is to provide on-
demand access to any individual sequence in the populations and en-
able pairwise comparison with the reference sequence (Figure 2).

invis uses stacked bars to represent difference statistics over popu-
lations with respect to the reference RNA sequence (Figure 2). The
frequency of nucleotides matching the reference sequence value at a
given position is visualized with a bar graph stacked above the base-
line. Frequencies for the remaining nucleotides are visualized stacked
below the baseline. The goal is to convey both the nature and magni-
tude of differences between the reference and population sequences.
The stacked bars are useful for discovering interesting mutation loca-
tions and their variance between sequence populations.

5.2 Interaction Techniques

Although low-dimensional projections can be useful for conveying the
structure of the sequence space, by construction they are lossy repre-
sentations. invis compensates for this fact using coordinated heat map
views of individual sequences and dynamic filtering. invis also pro-
vides selection aggregation and shortest path construction methods for
exploring patterns and relations among subsets of sequence data.

5.2.1 Brushing & Linking

We use brushing & linking in invis to coordinate the contents of the
sequences represented in the scatterplot with the data shown in the se-
quence maps. This is the main mechanism that allows users to inspect
global sequence space and individual sequences simultaneously. Hov-
ering over a location on the reference sequence heat map highlights all
sequences that are different from the reference at that location. Brush-
ing on nodes in the scatterplot updates the current sequence heat map.

5.2.2 Selection Aggregation

invis allows users to interactively aggregate mutations of selected se-
quences using logical operators. This can be useful for discovering
mutation patterns persistent across groups of sequences (Figure 4).
In our current implementation, the AND operator distinguishes muta-
tion types and can help reveal beneficial (functional) mutations. Con-
versely, the OR operator is agnostic to the type of mutation, but it is
possible to use an additional visual track of stacked bars to show the

AND OR OR

NOT

Fig. 4: Aggregation of selected sequences. Mutations (indicated with
black bars) can be aggregated using the logical operators AND, OR,
and NOT. The NOT operator is applied after any AND or OR opera-
tions are applied to the current selection.

distribution of the aggregation. Combined with NOT, OR (i.e., NOR)
is particularly useful for finding regions conserved across sequences.

5.2.3 Filtering

invis provides two basic dynamic filtering interactions based on
Hamming (mutation) distances: distance-to-reference filtering and ε-
filtering. Distance-to-reference filtering allows users to show and hide
sequences based on their mutation distances to the reference sequence.
This enables users to interactively explore level sets of the distance
field determined by the distance from the reference sequence (Fig-
ure 5).

ε-filtering enables users to explore different “ε-graphs” of the data.
An ε-graph is obtained by adding an edge connecting any pair of data
points that are within a distance of ε , where ε is an interactively-
adjustable parameter (Figure 3). We denote ε = k also by εk.

During ε-filtering, invis identically colors all sequence points that
are part of the same connected component of the current ε-graph. This
encoding avoids the visual clutter of drawing explicit edges while still
conveying connected clusters. There are three primary advantages to
dynamic ε-filtering: First, it enables users to query the native similar-
ity space of sequences in a multi-scale fashion. When ε = 0 we have a
collection of singletons and when ε is sufficiently large then we have
a complete graph. The ability to see structures coalescing, splitting, or
persisting across scales helps to better understand the structure of the
space and discover outliers. Second, it helps to validate the accuracy of
the projection used. For example, if two sequences are close to each
other in the mutation space they can sometimes be put far apart on
the plane due to projection error. Together with distance-to-reference
filtering, ε-filtering makes it easier to diagnose such anomalies (Fig-
ure 6). Third, ε-filtering helps users test connectivity hypotheses (of
evolutionary paths, for example) between data points under different
distance scales.

5.2.4 Evolutionary Paths

After identifying functional sequences, an important next task is to
understand how those sequences evolve, particularly from the refer-
ence sequence. Biologists are particularly interested in single muta-
tions (i.e., ε1-graphs) because adaptation of beneficial random, single
mutations is an important mechanism through which evolution occurs
(Figure 7). In invis, given an ε-graph of the sequence space, a user
can compute shortest paths from the reference sequence to other se-
quences.

The user can inspect sequences along a selected path through brush-
ing & linking or with a “play-the-path” interaction. The play-the-path
interaction first brings up the sequence heat map into the user’s view
and then animates the sequences from start to end along the path, high-
lighting them in order while updating the heat map with their sequence
contents.

6 NUMERICAL ENCODING OF SEQUENCES

Genomic sequences are often numerically encoded for computational
processing. We use the simple arbitrary encoding scheme discussed
previously, then apply PCA to obtain a two-dimensional layout of
RNA populations. While invis is independent of the particular choice



Fig. 5: Distance-to-reference filtering allows users to explore the direction of selection. (a-e) Collection of sequences within increasing distances
(5, 36, 79, 95, 150) from the reference (the white node).

Fig. 6: (a-f) ε-graphs of in vitro selection populations obtained using increasing ε values (0, 9, 18, 22, 68, 80). Graph edges are not displayed
but connected components are colored differentially. It is easy to see the regions where the projection is not accurate. For example, (e) shows
two clusters of sequences (in orange and violet, respectively) that overlap in the plane but are disconnected for almost all ε values.

Fig. 7: Shortest paths from the reference (the white node) to two sequences in the ε20-graph of the sequence space. In addition to the brushing
& linking interaction, a user can inspect sequences on a selected shortest path (highlighted as red) with a “play-the-path” interaction. The play-
the-path interaction first brings up the sequence heat map into the user’s view and then animates the sequences from start to end, highlighting
them in order while updating the heat map with their contents.
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Fig. 8: Two-dimensional layouts obtained using PCA and MDS with
different numerical encodings of sequence bases. The overall structure
of the layouts are very similar.

pca-0 pca-1 pca-2 pca-3 mds Dh

pca-0 1.000 0.7441 0.7087 0.7831 0.7273 0.7734
pca-1 1.000 0.8145 0.8362 0.7480 0.7689
pca-2 1.0000 0.8379 0.7578 0.7642
pca-3 1.0000 0.8516 0.8097
mds 1.0000 0.7766
Dh 1.0000

Table 1: Correlations among the distance matrices from four differ-
ent numerical encodings and two embedding methods and the original
distance matrix. All the statistics have the same p-value of 0.001.

of encoding scheme or embedding algorithm, it is important to under-
stand any significant effects of different encoding schemes and em-
bedding algorithms on the two dimensional layout.

Here, we compare layouts computed using different numerical en-
codings of the sequence population selected with the 25 mM magne-
sium concentration. In addition to our default numerical encoding, we
consider three other encodings obtained by randomly permuting the
default. The four encodings that we evaluate are:

0. A=1 G=2 T=3 C=4 gap=0 (default)

1. A=4 G=1 T=0 C=2 gap=3

2. A=0 G=4 T=2 C=3 gap=1

3. A=10000 G=01000 T=00100 C=00010, gap=00001 (binary)

For comparison, we also use MDS to perform the projection. We
use Hamming distance as a similarity measure. As Hamming distance
does not differ across numerical encodings, we only compute the MDS
layout once. Figure 8 shows the five layouts derived from these cases.
We align the computed layouts up to a similarity transform (uniform
scaling, rotation, and translation). We observe that the overall structure
of the projected population space is very similar across the encodings
and projection (embedding) methods used.

Next, we statistically verify what we see. We compute a pre-
alignment distance matrix for each layout using Euclidean distance
in the plane. We then run Mantel’s permutation test [21] to compute
Spearman’s rank correlation coefficients between the distance matri-
ces and their statistical significance. We also include the Hamming
distance matrix (Dh) containing Hamming distances between unpro-
jected sequences in the comparison. Results show that all five layouts
are highly correlated with each other and with the distance matrix of
sequences (Table 1). All correlations are significant at p < 0.001.

Why is there no significant effect of numerical encoding on the lay-
out produced? Though answering this question conclusively requires
further investigation, one explanation is the correlations in the in vitro
selection population. To start with, the sequences of the population
originate from the same reference and were selected based on having
the same functional properties in the in vitro experiment. Also, they
are aligned to the reference sequence, which further endows structure

on their space. Therefore, the structure of the sequence space deter-
mined by the correlations of sequence dimensions likely dominates
any effects of numerical encoding, especially when the number of data
points is large. Conversely, we expect to see more pronounced effects
of numerical coding when sequences have uniformly low or no corre-
lations (i.e., uniformly random sequences).

7 USAGE EXAMPLES

As a preliminary evaluation of invis, we observed multiple users apply
the tool for biological data analysis. In the first case, we observed a
non-expert in biology to see what they discover using the tool. In the
second case, a biologist used invis to analyze his experimental data.

7.1 Initial Exploration by a Non-Expert

We asked a (non-biologist) member of our research group to use invis
to explore sequence data and observed his actions. The user first ex-
amined the projection view and familiarized himself with the brushing
and linking features. He then examined the projected sequences.

Starting from the projection view, the user identified the reference
sequence and examined the sequences clustered around that point. He
found that the dense cluster around the reference consists of sequence
variants with one or more point mutations, but overall good alignment
without any nucleotide insertions or deletions.

The user then looked at the “trail” of sequences extending off to the
right from the reference, along the top of the display. The user discov-
ered that these points consist of sequences that have a single nucleotide
insertion (in addition to point mutations). As one moves further along
the trail, the insertion point occurs earlier in the sequence, inducing
greater distance from the reference sequence.

Next, the user turned his attention to the group of points at the
bottom of the projection view. After hovering over various points
and examining the underlying nucleotide sequences, he surmised that
this grouping is ill-defined. Both multiple nucleotide inserts and nu-
cleotide deletions appear to occur. The user hypothesized that this
grouping actually consists of multiple clusters that have been projected
down onto the same region of the plane.

To test this hypothesis, the user enabled ε-filtering. By adjusting
the ε value, the user observed a separation among the sequences in
the bottom grouping (as in Figure 7). Unlike the other groups in the
projection views, the bottom group has sub-collections that are more
distant from each other. It appears that the bottom groupings consists
of separate clusters that have been projected on top of each other.

Finally, the user spent some time focusing on the population se-
quence comparisons at the bottom of application window. Examining
the sequence views, the user did not discover any major differences be-
tween the different RNA populations. He noted some minor variations
of potential interest (about two-thirds into the sequence length), but
for the most part the populations looked quite similar. This conclusion
was further strengthened by examining the projection view and not-
ing that the different colored points representing different populations
project onto the overlapping clusters with similar densities.

In each of these explorations, the user made heavy use of the pro-
jection view and sequence view in tandem, fluidly switching between
global and local views to make sense of the data.

7.2 Analysis by a Biological Researcher

Our biologist collaborator is interested in discovering functional RNAs
that can control gene expression in response to internal and external
cellular signals. In a set of recent in vitro selection experiments, he
wanted to learn how changing environments might affect the distri-
bution of a biological function in sequence space. He used invis to
explore a dataset collected from these experiments. The dataset (de-
scribed in Section 4) contained a pre-selection population of reads and
three populations that were isolated (selected) using three separate re-
actions with different magnesium concentrations. Each population had
several thousands of individual reads.

Upon initial loading of the dataset, invis provided an immediate
qualitative assessment. The collaborator observed that all data sets,
including the pre-selection sample, had similar projected distributions.



From this, he concluded that the quality of each data set was compa-
rable because none of the samples had a major difference which could
be caused by an artifact in a single experiment. For example, short
inactive sequences can often escape selection because they are more
easily amplified. These types of artifacts can often occur during in
vitro selection experiments, and detecting them is important. Next,
he concluded that the difference between the distribution of sequences
under the different conditions must be subtle. This was expected be-
cause in this set of experiments, all selected sequences were expected
to adopt similar folded structures. This is in contrast to some selec-
tions that begin from completely random sets of sequences, which can
result in multiple separate solutions to a biological function.

One surprising observation from this qualitative perspective was
that the sequence space of the selected molecules overlapped entirely
with the pre-selection data. Stated another way, the functional se-
quences permeate sequence space as far as the experiment explored.
This is in agreement with computational studies that have shown that
RNA secondary structures form vast neutral networks in sequence
space. Further, using ε-filtering, the collaborator explored which se-
quences could be connected through a series of successive individual
mutations. He was excited to discover that many sequences that were
far apart could be connected through a series of point mutations. This
observation supports the hypothesis that evolution could explore the
distant parts of genotype space without losing the required function.

Next, the collaborator searched for patterns in genotype space. He
noticed that within close proximity to the reference sequence, the data
was rather uniformly dispersed, and occupied a circular region. How-
ever at increasing distances, the projection of the data became more
sparse, so that a long thin region of sequence space was occupied. He
noticed that this was true for both the pre-selection and selection data,
which indicated a bias in the randomization procedure. He conjectured
that the vast number of sequences possible at higher distances neces-
sarily results in a statistical sampling (bottlenecking) which could have
lead to the uneven distribution at higher distances.

The collaborator proceeded to explore the data at the nucleotide
level. He found it useful to be able to search for common mutations
that occurred in different regions of genotype space. These mutations
are expected to have functional significance even if the rest of other
parts of the sequence are changed. This process was further facilitated
by the ε-filtering, which highlights similar sequences.

Our collaborator found invis to have several desirable features.
From the perspective of the collaborator, the tool had several desir-
able features. First, it enabled very easy data exploration. Because
populations could be interactively added and removed from the visu-
alization, similarities and differences between populations were easily
identifiable. With large numbers of data points, the difference between
two data sets was most easily observed by keeping one set visible, and
adding and taking away another, repeatedly. This is easily accom-
plished with our tool, but not with traditional programs. Additionally,
the “sequence space” perspective of the tool enabled comparisons that
are normally inaccessible. For example, the collaborator could see
if different selection conditions caused selected sequences to become
more or less spread out, or if clumps of sequences appeared in dif-
ferent regions. These regions of similarity or difference could then
be further analyzed at the individual sequence level, without changing
the global perspective. Our collaborator values the ability to maintain
a sequence space perspective even while focusing in on individual se-
quences. Individual sequences could be analyzed while keeping the
relative distance to the reference sequence in mind.

8 DISCUSSION

We have presented invis, the first visual analysis tool to facilitate ex-
ploration of large, high-dimensional in vitro RNA selection datasets.
invis provides a novel configuration of coordinated views, enabling
simultaneous inspection of global projections of sequence data along-
side local regions of selected dimensions and sequence clusters. invis
also contributes several interaction methods for aggregating, filtering,
and linking sequences of populations based on their similarity. We im-
plemented invis in JavaScript using D3 [6]; source code is available at

https://github.com/StanfordHCI/invis.

invis works directly in the sequence space of RNA populations from
in vitro selection, yet could be easily combined with additional feature
space visualizations. This approach makes it particularly suitable for
exploratory visual analysis. While we have focused on in vitro selec-
tion in this paper, the design of invis can be applied to visualize other
population-scale genomic datasets. We now discuss two examples.

We are currently working to apply invis to visualize the EteRNA
player solution space. EteRNA is a web-based game with the goal
of uncovering the rules of RNA design [1]. Players are given RNA
secondary structures and asked to find the sequence that folds into
the given RNA structure. They then submit their solutions, the most
promising of which are synthesized and probed in vitro using chemi-
cal mapping. These experimental results are returned to players, who
then modify and resubmit their solutions. This process can be seen as
another type of “evolution” for sequences that have a particular phe-
notype. In this case, it is human-guided instead of in vitro selected.

Single nucleotide polymorphisms (SNPs) are used in population
genetics to study sources of genetic variation. Figure 9 shows snap-
shots from our visualization of a SNP dataset [37] containing around
250,000 SNPs genotyped in more than 500 individuals from 27 dif-
ferent populations. We compute PCA on the whole dataset as well as
separately on the populations coming from the same continental re-
gion. The latter provides a more informative zoom-in when the user
would like to see variation within a single continental region. One im-
mediate insight from this visualization is that genetic variation, at least
at the SNP level, is strongly correlated with ethnicity and geography.

There are also challenges ahead. RNA reads of in vitro experiments
are short and can be displayed as heat maps without hitting display size
limits. On the other hand, visualizing 3 billion DNA base pairs or mil-
lions of SNP locations in the same way is not possible. We could still
use interactive scatterplots representing low-dimensional projections.
However, intelligent filtering and aggregation methods, both at the in-
teraction and data representation levels, are needed to enable flexible
exploration of nucleotide-level details.

Motivated by the unprecedented potential of high-throughput
genome sequencing, Sidow argued for a data-driven approach to ge-
nomic research in his paper titled “Sequence first. Ask questions
later.” [31], which aptly summarizes the current research trends in ge-
nomics. According to Sidow, in-depth comparative analyses that are
based on large amounts of sequence data can transform biomedicine.
In fact, the last decade has seen developments to test this vision. Initia-
tives such as The International HapMap Project, The Cancer Genome
Atlas (TCGA) Project, The 1000 Genomes Project, The 1000 Plant
Genomes Project, and The Genome 10K are generating large collec-
tions of genomic data. Neither have these developments been limited
to academic research. Now there are companies providing personal
sequencing services. In the process, they collect large amounts of ge-
netic data, creating a fertile ground for a new kind of genome-wide
association study (e.g., [11]).

Visual analysis tools, however, have not kept pace with this fast in-
flux of new data in the field. For example, if the goal is to browse and
compare a few genomes or genomics features in depth, there are many
good tools to carry out the task. But if the goal is to explore thousands,
if not millions, of genomic data points, especially without knowing in
advance where to look and what to look for, existing tools and tech-
niques quickly become limited as they have not been designed for the
task at hand. In order to ask meaningful questions “later”, we need new
visual analysis tools designed for exploring large, population-scale ge-
nomic datasets “now”; invis can be seen as one step forward in this
direction.

ACKNOWLEDGMENTS

We thank Diana MacLean and Stuart K. Card for their feedback on
earlier drafts of this paper.

REFERENCES

[1] Eterna project website. http://eterna.cmu.edu/web/.

https://github.com/StanfordHCI/invis
http://eterna.cmu.edu/web/


(a) (b)

Fig. 9: (a) SNP variation between subjects sampled from 27 populations. This variation is highly correlated with ethnic-
ity and geography. (b) Samples from Africa; substructures of genetic variation appear (see the interactive visualization at
http://graphics.stanford.edu/˜cagatay/genome/embed.html.)

[2] T. Abeel, T. Van Parys, Y. Saeys, J. Galagan, and Y. Van de Peer.

Genomeview: a next-generation genome browser. Nucleic Acids Re-

search, 40(2):e12, 2012.

[3] C. Ahlberg. Spotfire: an information exploration environment. SIGMOD

Rec., 25(4):25–29, 1996.

[4] C. Ahlberg and B. Shneiderman. Visual information seeking using the

filmfinder. In Proc. CHI, pages 433–434, 1994.

[5] J. C. Barrett, B. Fry, J. Maller, and M. J. Daly. Haploview: analysis and

visualization of ld and haplotype maps. Bioinformatics, 21(2):263–265,

2005.

[6] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents.

IEEE TVCG (Proc. InfoVis), 17(12):2301–2309, 2011.

[7] J. M. Burke and A. Berzal-Herranz. In vitro selection and evolution of

rna: applications for catalytic rna, molecular recognition, and drug dis-

covery. The FASEB Journal, 7(1):106–12, 1993.

[8] W. S. Cleveland and R. McGill. The Many Faces of a Scatterplot. Journal

of the American Statistical Association, 79:807–822, 1984.

[9] A. Edwards, H. Voss, P. Rice, A. Civitello, J. Stegemann, C. Schwager,

J. Zimmermann, H. Erfle, C. Caskey, and W. Ansorge. Automated dna

sequencing of the human hprt locus. Genomics, 6(4):593 – 608, 1990.

[10] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the dice: Multidi-

mensional visual exploration using scatterplot matrix navigation. IEEE

TVCG (Proc. InfoVis), 14(6):1141–1148, 2008.

[11] N. Eriksson, J. M. Macpherson, J. Y. Tung, L. S. Hon, B. Naughton,

S. Saxonov, L. Avey, A. Wojcicki, I. Pe’er, and J. Mountain. Web-based,

participant-driven studies yield novel genetic associations for common

traits. PLoS Genet, 6(6), 2010.

[12] M. Fiume, E. J. M. Smith, A. Brook, D. Strbenac, B. Turner, A. M. Me-

zlini, M. D. Robinson, S. J. Wodak, and M. Brudno. Savant genome

browser 2: visualization and analysis for population-scale genomics. Nu-

cleic Acids Research, 40(W1):W615–W621, 2012.

[13] R. S. Harris. Improved pairwise alignment of genomic DNA. 2007.

[14] T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statistical

learning: data mining, inference, and prediction. Springer, 2013.

[15] A. Inselberg. Multidimensional detective. In Proc. InfoVis, pages 100–

107, 1997.

[16] H. Jänicke, M. Böttinger, and G. Scheuermann. Brushing of attribute

clouds for the visualization of multivariate data. IEEE TVCG (Proc. In-

foVis), 14(6):1459–1466, 2008.

[17] D. A. Keim and H.-P. Krigel. Visdb: Database exploration using multidi-

mensional visualization. IEEE CG & A, 14(5):40–49, Sept. 1994.

[18] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M.

Zahler, and D. Haussler. The human genome browser at ucsc. Genome

Research, 12(6):996–1006, 2002.

[19] M. I. Krzywinski, J. E. Schein, I. Birol, J. Connors, R. Gascoyne,

D. Horsman, S. J. Jones, and M. A. Marra. Circos: An information aes-

thetic for comparative genomics. Genome Research, 2009.

[20] J. LeBlanc, M. O. Ward, and N. Wittels. Exploring n-dimensional

databases. In Proc. Visualization, pages 230–237, 1990.

[21] N. Mantel. The Detection of Disease Clustering and a Generalized Re-

gression Approach. Cancer Research, 27(2 Part 1):209–220, 1967.

[22] A. M. Maxam and W. Gilbert. A new method for sequencing dna. PNAS,

74(2):560–564, 1977.

[23] J. Messing, R. Crea, and P. H. Seeburg. A system for shotgun dna se-

quencing. Nucleic Acids Research, 9(2):309–321, 1981.

[24] M. Meyer, T. Munzner, and H. Pfister. Mizbee: A multiscale synteny

browser. IEEE TVCG (Proc. InfoVis), 2009.

[25] C. B. Nielsen, M. Cantor, I. Dubchak, D. Gordon, and T. Wang. Visual-

izing genomes: techniques and challenges. Nat Methods, 7(3 Suppl):S5–

S15, Mar 2010.

[26] J. T. Robinson, H. Thorvaldsdttir, W. Winckler, M. Guttman, E. S. Lan-

der, G. Getz, and J. P. Mesirov. Integrative genomics viewer. Nature

Biotechnology, 29(1):24–26, 2011.

[27] K. Rutherford, J. Parkhill, J. Crook, T. Horsnell, P. Rice, M.-A. Rajan-

dream, and B. Barrell. Artemis: sequence visualization and annotation.

Bioinformatics, 16(10):944–945, 2000.

[28] F. Sanger and A. Coulson. A rapid method for determining sequences

in dna by primed synthesis with dna polymerase. Journal of Molecular

Biology, 94(3):441 – 448, 1975.

[29] M. Schatz, A. Phillippy, B. Shneiderman, and S. Salzberg. Hawkeye: an

interactive visual analytics tool for genome assemblies. Genome Biology,

8(3):R34, 2007.

[30] J. Seo and B. Shneiderman. A rank-by-feature framework for unsuper-

vised multidimensional data exploration using low dimensional projec-

tions. In Proc. InfoVis, pages 65–72, 2004.

[31] A. Sidow. Sequence first. Ask questions later. Cell, 111(1):13 – 16, 2002.

[32] J. Stalker, B. Gibbins, P. Meidl, J. Smith, W. Spooner, H.-R. Hotz, and

A. V. Cox. The ensembl web site: Mechanics of a genome browser.

Genome Research, 14(5):951–955, 2004.

[33] C. Stolte and P. Hanrahan. Polaris: A system for query, analysis and

visualization of multi-dimensional relational databases. In InfoVis, pages

5–14, 2000.

[34] P. Stothard and D. Wishart. Circular genome visualization and explo-

ration using cgview. Bioinformatics, 21:537–539, 2005.

[35] D. F. Swayne, D. T. Lang, A. Buja, and D. Cook. Ggobi: evolving

from xgobi into an extensible framework for interactive data visualiza-

tion. Comput. Stat. Data Anal., 43(4):423–444, Aug. 2003.

[36] D. S. Wilson and J. W. Szostak. In vitro selection of functional nucleic

acids. Annual Review of Biochemistry, 68(1):611, 1999.

[37] J. Xing, W. S. Watkins, D. J. Witherspoon, Y. Zhang, S. L. Guthery,

R. Thara, B. J. Mowry, K. Bulayeva, R. B. Weiss, and L. B. Jorde. Fine-

scaled human genetic structure revealed by snp microarrays. Genome

Research, 19(5):815–825, 2009.

http://graphics.stanford.edu/~cagatay/genome/embed.html

	Introduction
	Biological Background
	Related Work
	Genomic Sequence Visualization
	Multidimensional Data Visualization

	Data Preparation
	The Design of invis
	Visual Encoding
	Scatterplots of Sequence Populations
	Sequence Maps

	Interaction Techniques
	Brushing & Linking
	Selection Aggregation
	Filtering
	Evolutionary Paths


	Numerical Encoding of Sequences
	Usage Examples
	Initial Exploration by a Non-Expert
	Analysis by a Biological Researcher

	Discussion

