
GraphPrism: Compact Visualization of Network Structure
Sanjay Kairam, Diana MacLean, Manolis Savva, Jeffrey Heer

Stanford University Computer Science Department
{skairam, malcdi, msavva, jheer}@cs.stanford.edu

ABSTRACT
Visual methods for supporting the characterization, com-
parison, and classification of large networks remain an open
challenge. Ideally, such techniques should surface useful
structural features – such as effective diameter, small-world
properties, and structural holes – not always apparent from
either summary statistics or typical network visualizations.
In this paper, we present GraphPrism, a technique for visu-
ally summarizing arbitrarily large graphs through combina-
tions of ‘facets’, each corresponding to a single node- or edge-
specific metric (e.g., transitivity). We describe a generalized
approach for constructing facets by calculating distributions
of graph metrics over increasingly large local neighborhoods
and representing these as a stacked multi-scale histogram.
Evaluation with paper prototypes shows that, with minimal
training, static GraphPrism diagrams can aid network anal-
ysis experts in performing basic analysis tasks with network
data. Finally, we contribute the design of an interactive sys-
tem using linked selection between GraphPrism overviews
and node-link detail views. Using a case study of data from
a co-authorship network, we illustrate how GraphPrism fa-
cilitates interactive exploration of network data.

Categories and Subject Descriptors
I.6.9 [Computing Methodologies]: Visualization—Visu-
alization techniques and methodologies

Keywords
Network analysis, graph visualization, scalability

1. INTRODUCTION
The size of available network datasets is growing consid-

erably, already exceeding millions of nodes and edges [25].
Many existing graph visualization methods such as node-
link diagrams and adjacency matrices were developed in the
context of smaller graphs. For larger networks these tech-
niques break down, making them unsuitable for supporting
inference about higher-level network properties.

In this paper, we make two contributions towards the
problem of scaling graph visualization to larger networks.
First, we present GraphPrism, a visualization technique for
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Figure 1: GraphPrism and node-link diagrams for
the largest component of a co-authorship graph.

compactly summarizing networks of arbitrary size. Graph-
Prism views combine multiple ‘facets’, each providing a sta-
tistical summary of the graph with respect to a single node-
or edge-specific metric. By computing metrics over graph
neighborhoods of increasing size, GraphPrism generalizes
Bagrow et al.’s [3] B-Matrix technique. Paper prototype
evaluations with network analysis experts demonstrate that
analysts can use GraphPrism diagrams to assess and com-
pare network structures.

Second, we describe the design of an interactive system
for inspecting graphs at multiple levels of detail using linked
selection between a GraphPrism overview and a node-link
detail view. Through a case study with a network science
co-authorship graph (Figure 1), we show how GraphPrism
facets function as both visual summaries and dynamic query
selectors to investigate patterns ranging from the level of
individual nodes and edges up to global network structure.

2. RELATED WORK
We first review relevant work in the area of network anal-

ysis and identify properties critical for understanding graph
data. We then examine existing graph visualization ap-
proaches and discuss how well each conveys these properties.

2.1 Properties of Complex Networks
Our goal with GraphPrism is to surface structural prop-

erties of complex networks in a scalable, spatially compact
manner. Here, we identify structural properties of networks
which are critical in performing common analysis tasks, and
thus should ideally be conveyed by network visualizations.
Key definitions are summarized in Table 1.



Degree. Node degrees for many real networks have been
shown to follow a power-law distribution [15]; such patterns
can yield insight into mechanisms underlying system growth
[4]. Deviations from expected distributions can reveal un-
predicted system properties which may affect the structure
of the network [25]. Thus, there are significant benefits to
visualizing the overall shape of the degree distribution.

Diameter. The diameter of a graph intuitively expresses
the graph’s ‘width’. The presence of specific structures,
such as a long isolated chain, can change this value dra-
matically — even if such structures do not play a significant
role in the overall system. A more robust version of this met-
ric is the effective diameter, defined as the number of hops
separating a given percentage of connected node pairs (com-
monly 90% [24]). Visualizing the relationship between this
choice of threshold and the effective diameter may provide
additional insight into patterns of graph connectivity.

Transitivity. Also named clustering coefficient, transi-
tivity describes network interconnectedness. Local transi-
tivity around individual nodes can aid reasoning about pro-
cesses like clique formation [11]. Global transitivity in neu-
ral, infrastructure, and social networks (among others) [32]
has been shown to be significantly higher than in random
networks with equivalent degree distributions [24, 29].

Small-Worlds. Networks with short average path lengths
and local clustering of nodes exhibit so-called small-world
effects [32]. First identified in social networks [28], further
study has revealed this phenomenon in many other types
of systems, such as biological and information networks [25,
32]. The presence of small-world properties in communica-
tion and information networks indicates that these systems
can be leveraged for rapid information passing and search [1,
23]. Making such properties evident in a visualization can
aid reasoning about global system behavior.

Bridges. We define a local bridge as an edge connecting
two nodes which otherwise share no immediate neighbors,
and a global bridge as connecting two otherwise disconnected
nodes. Such bridges can represent critical pathways through
which resources in a system might travel [12]. Structural
holes created around these bridges have been shown to fos-
ter creativity and productivity in professional information
networks by preventing ‘echo chambers’ which might occur
in more heavily clustered networks [13, 14].

Communities. In network analysis, communities are
generally defined as collections of nodes which tend to link
more with each other than with nodes outside. Though this
concept is clearly derived from social networks, meaningful
analogues have been discovered in a variety of systems, in-
cluding biological, information, and citation networks [18].

2.2 Network Visualization
We review prior visualization approaches to see how well

they accomplish the described analysis goals.
Node-Link Diagrams and Adjacency Matrices. For

small, sparse networks, node-link diagrams provide an effec-
tive means of visualizing connectivity. Producing a percep-
tually effective layout becomes difficult, however, as graph
complexity increases [9]. Edge crossings, cluttering, and oc-
clusion problems can hinder inference. Filtering techniques
[2] can mitigate scaling problems by limiting the information
shown; however, this solution does not translate to static vi-
sualization and does not facilitate perception of structural
properties at scales beyond local node neighborhoods.

Degree For a node v in G, the count of
edges in G incident on v.

Diameter The length of the maximum
shortest path between any pair of
connected nodes u, v in G.

Triad A triplet of connected nodes. A
triad is closed if edges connect all
three nodes to each other.

Local Transitivity For some v in G, the fraction of
triads in G which are closed for
the subgraph defined by v and its
immediate neighbors.

Global Transitivity The fraction of all triads in G
which are closed.

Table 1: Common Graph-Theoretic Measures

Adjacency matrices avoid edge-crossing and occlusion prob-
lems but are still subject to layout effects; the perception of
larger structures such as communities depends on a proper
permutation of rows and columns [6]. Algorithms exist for
sorting adjacency matrices [16], but the choice of which to
use is dependent on task context and prior insight into the
expected structure [20]. Like node-link diagrams, the scal-
ability of adjacency matrices is limited due to the bounded
resolution of both pixel displays and human visual acuity.

Recent work has attempted to overcome limitations of
each of these approaches by combining them [20, 21, 22]. To
aid path-following, MatLink [21] augments an adjacency ma-
trix with arcs along row and column headers. NodeTrix [22]
starts with a traditional node-link view, but reduces occlu-
sion by representing dense clusters as small adjacency ma-
trices. While these approaches marry benefits of the two
visualization types, they remain limited by layout and scal-
ing issues as network size increases and show only a subset
of the topological features we hope to convey.

Abstracting Network Properties. To facilitate analy-
sis of larger graphs, successful visualization approaches must
abstract the data. PivotGraph [31] and Honeycomb [19]
both aggregate graph data based on node attributes. Pivot-
Graph collapses nodes with particular attribute values into
a single super-node, allowing viewers to easily see how edges
connect nodes of different types. Honeycomb aggregates
on the basis of node hierarchy and visualizes customizable
metrics to surface interesting network properties at multi-
ple levels of resolution. The requirement of node metadata
limit these approaches, however, making them unsuitable
for many instances of general graph data.

ManyNets [17] enables visual comparison of multiple net-
works through a tabular display. Table cells contain either
individual descriptive statistics or visualizations of distribu-
tions. This approach is scalable and can surface many of the
properties described in §2.1. Though useful for comparisons
of network data sets, simple descriptive statistics still fail to
reveal much of the structural insight needed for rich charac-
terization of graph data. ManyNets adapts to this challenge
by allowing analysts to connect back to a node-link diagram,
an approach that we also adopt in the design of our inter-
active system. Our aim with GraphPrism is to improve on
prior work by crafting a visualization technique which scales
effectively while giving a richer view of network structure.



Figure 2: A B-Matrix of the co-author network in
Fig. 1. Path length ` increases from top to bottom
and number of nodes k increases from left to right.

3. DESIGNING GRAPHPRISM
GraphPrism extends the B-Matrix approach to visualiz-

ing graph connectivity [3]. We first modify B-Matrices to
accommodate additional metrics and then describe visual
encodings intended to improve graphical perception.

3.1 B-Matrices
The GraphPrism technique was inspired by Bagrow’s B-

Matrix, which visually presents graph connectivity patterns.
The B-Matrix (Figure 2) is a two-dimensional matrix where
each cell B`,k represents the number of nodes which can
reach k other nodes in exactly ` hops (k increases from left
to right, ` from top to bottom). Using color to encode cell
values, the resulting image forms an abstract ‘portrait’ of
the network that reveals connectivity patterns.

As this representation does not depend on a sorting or la-
beling of individual nodes, it is invariant for all isomorphs of
a graph. Each row ` of the B-Matrix is a histogram of paths
whose length is exactly `. The first row (` = 1) is the degree
distribution. Together, these distributions concisely capture
many structural properties of the graph, such as diameter
and dimensionality, and to some extent, global properties
such as small-world behavior.

Bagrow et al. describe the utility of the B-Matrix for char-
acterizing and categorizing networks using both empirical
and simulated data. However, their representation fails to
convey some of the properties that we identified as highly
relevant to network analysis, such as transitivity and the
presence of bridges. Moreover, aspects of the visual design
could be improved to facilitate graphical perception.

3.2 Generalization to Other Metrics
We have generalized the B-Matrix approach to depict other

node- and edge-specific metrics. We chose our current set
of metrics to create GraphPrisms for analyzing unweighted
directed and undirected graphs; additional metrics may be
suitable for other types of graphs.

3.2.1 Node-Specific Metrics
For any node-specific metric, we aim to surface changes

as we shift from a local (immediate node neighborhood)
to a global (entire network) perspective. To characterize
intermediate levels, we define the `-level neighborhood for

a node v ∈ V (G) (where V is the set of nodes in G) as:
N`(v) = {U : u ∈ V, distance(u, v) ≤ `}. We compute each
node-specific metric over `-neighborhood levels starting with
each individual node and expanding outwards. At some level
`n (n ≤ diameter(G)), the node neighborhood will comprise
the entire graph and the metric distribution will converge
such that ∀ ` ≥ `n, the values will remain the same.

Connectivity. This first metric is simply a variation of
that used in the B-Matrix. Rather than representing the
number of nodes exactly ` hops away from a given node
v (as in the B-Matrix), we use |N`(v)|, or the number of
nodes ≤ ` hops away. In other words, each row depicts
the cumulative distribution thus far. This metric is suited
to undirected networks; we can use alternative versions for
directed networks. We define in-connectivity to be the num-
ber of nodes which can reach v within ` hops using directed
edges and out-connectivity to be the number of nodes which
v can reach within ` hops.

Transitivity. At ` = 1, transitivity can vary from 0,
indicating the presence of chains or structural bridges, to 1,
indicating that all local triads are closed. We extend this
notion to larger neighborhood levels (` ≥ 1) by computing
the global transitivity of the subgraph defined by N`(v).
For a fully-connected graph, this distribution will converge
to a single value for all nodes at some ` ≤ diameter(G).
For graphs with multiple components, the distributions will
converge to a single value for each connected component.

Conductance. The conductance of a subgraph H ∈ G
measures how ‘community-like’ H is. It is defined as:

conductance(H) = 1− 2 ∗ |E(H)|∑
v∈H kv

where |E(H)| represents the number of edges in the sub-
graph H and kv represents the degree of node v in the origi-
nal graph G. Thus, if H consists of a set of nodes which link
to many other nodes, but not each other, the conductance
of H will be 1. If H is an isolated clique, then its conduc-
tance will be 0. At each level `, we compute this measure
on the subgraphs defined by the `-neighborhoods of each
node. If a node is roughly at the center of a well-defined
community, we may see a sharp decrease in the conductance
when the `-neighborhood roughly overlaps. Though not an
exact method for finding communities, this method requires
calculating conductance only for a limited set of node com-
binations. The ‘ideal’ approach of calculating conductance
on all possible node subsets and choosing the minimum will
find better communities but is computationally intractable
for large graphs [24].

Density. The density of a graph is simply the ratio of the
number of edges to the total number possible. We compute
this metric in a manner similar to the transitivity, where
we calculate the density over the subgraph defined by the
`-neighborhood of a particular node. This gives us an alter-
native view into local clustering around nodes.

3.2.2 Edge-Specific Metrics
GraphPrism can be similarly used to describe graph edges.

To evaluate the potential utility of visualizing edge metrics,
we construct two closely-related versions of metrics designed
to identify how ‘redundant’ a particular edge is in the struc-
ture of the surrounding graph. We calculate this generally
by measuring the overlap between the neighborhoods of the
two nodes incident to the edge when the edge is removed.



Jaccard and MeetMin. The Jaccard similarity of two
node neighborhoods is the ratio of the size of the intersection
over the size of the union. Nodes which share many common
neighbors will have Jaccard close to 1, while those which
are disconnected aside from their connecting edge will have
Jaccard close to 0. Melançon et al. [27] describe a method
for extending this metric to neighborhoods of arbitrary size
which operates analogously to the approach we use for node-
specific metrics. MeetMin is defined similarly as the ratio of
the size of the intersection of the two neighborhoods over the
size of the smaller neighborhood. Cases in which edges con-
nect nodes with neighborhoods of dissimilar size may have
higher MeetMin values than Jaccard, and thus this metric
may surface different patterns.

3.3 Visual Encoding Choices
In designing GraphPrism, we evaluated the visual encod-

ing choices made for the B-Matrix and modified them in
order to better support perceptual inference.

Stacked Histograms. Preserved from the B-Matrix ap-
proach is the use of stacked histograms. Values for each level
` are binned into histograms and stacked to form a heatmap
that facilitates both row comparisons (distributions for a sin-
gle level) and column comparisons (changes between levels).
This design is similar in this regard to Bertin’s matrices [7]
and aligns with Mackinlay’s recommendations for compos-
ing data along a single axis [26].

Color Encoding. As shown in Figure 2, B-Matrices en-
code histogram values using hue, which may not be optimal
for encoding values on a continuous scale [8, 26]. We instead
use color intensity to represent histogram values, more ac-
curately enabling quantitative inferences about the values
of bins. To enable comparisons between networks of differ-
ent sizes, we map histogram values to the interval [0, 1] and
use a logarithmic scale to map color intensity to normalized
value (with black representing 1).

3.4 Example: Zachary’s Karate Club
Through a simple example familiar to the network analy-

sis community, we now show how GraphPrism can illustrate
features of real networks. Zachary’s ‘Karate Club’ describes
friendships among 34 members of a karate club at US univer-
sity in the 1970s [34]; it is a common example of community
fission, as the club later split into two separate groups. For
simplicity, we discuss just three facets: node-centric Con-
nectivity and Transitivity, and edge-centric Jaccard Overlap
(abbreviated as Jaccard). Figure 3 shows the node-link and
GraphPrism diagrams for this network, through which we
can observe the following properties:

Degree. The white top-left square of the Connectivity
facet (1) indicates that the group has no isolates, while the
two leftmost blocks in the top row (2) show that most mem-
bers (∼ 70%) are friends with less than 15% of the group.
Similarly, the rightmost block in that row (3) shows that
< 5% of members are friends with at least half of the group.
In contrast to the low connectivity in ` = 1, looking at ` = 2
(4) shows us that most nodes can reach at least half of the
other nodes in the graph within 2 hops (friends of friends).

Diameter. The Connectivity facet shows that most nodes
can reach each other within 4 hops, thus conveying the ef-
fective diameter (5). By ` = 5, the degree distribution con-
verges to the exact diameter. The facet converges to a single
value, showing that the graph consists of a single connected
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Figure 3: Node-Link and GraphPrism Diagrams for
the Zachary’s Karate Club Network.

component. If, for instance, the largest connected compo-
nent comprised 80% of the nodes, the Connectivity facet
would converge at multiple values, the largest being 0.8.

Transitivity. The rightmost square of the Transitivity
facet (6) indicates that ∼ 30% of nodes have transitivity
close to 1 (i.e., these members’ friends typically are also
friends of each other). The leftmost square (7) shows that
< 5% of nodes have transitivity at or near 0. This dis-
tribution suggests the presence of multiple natural clusters
(adding the Conductance facet could help to verify this). As
` increases and neighborhoods overlap more, the spread of
calculated `-transitivity values shrinks. By ` = 4, values
converge to the global transitivity for the graph, ∼ 0.25.
Again, if the graph had multiple connected components, the
facet would converge to multiple values showing the global
transitivities for those different components.

Bridges. Focusing on the leftmost column of the Jac-
card facet, we find that for ` = 1, about (∼ 30%) of edges
connect nodes which have no neighbors in common, mak-
ing them local bridges (9). Values in the bottom left corner
(10) indicate the presence of global bridges; in the Karate
network, we see that there is only one (a leaf node). The
wide spread in this metric in the first level (` = 1) also
reveals diverse local structure in the graph.

4. PAPER PROTOTYPE EVALUATION
To assess whether the abstract representation provided by

GraphPrism is legible and useful to analysts, we engaged in a
paper prototype evaluation with 7 network analysis experts.
We had participants complete two tasks involving compari-
son and classification of network data and asked open-ended
feedback questions about how the visualization might be
best integrated into interactive analysis systems. Diagrams
used in both study tasks contained the three facets discussed
above: Connectivity, Transitivity, and Jaccard Overlap.

4.1 Participants
Seven academic researchers (6 Male, 1 Female), all of

whom had actively published in the field of network analysis
(5 CS, 2 Sociology), each participated in a 1-hour evaluation
and interview. The first 15 minutes consisted of a structured
tutorial, with a walkthrough of metrics used, explanation of
how facets were constructed, and examples of how the di-
agram could be used to characterize sample graphs. Tasks
were administered over the next 30 minutes, and the inter-
view was given in the final 15 minutes of the session.
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Figure 4: An example of a line-up task (Task 1) completed by participants. One of the diagrams above
corresponds to the Jazz network and the others to random models (see footnote for answer).

Network |V | |E| Comps. Diam. Trans.

Airlines 332 2126 1 6 0.75
Jazz 198 5484 1 6 0.63

Networks 1589 2742 396 17 0.87
Yeast 2361 7182 101 11 0.2

Table 2: Summary statistics given to participants
for Task 1: network characterization.

Network Airlines Jazz NetSci Yeast All

N 4 5 5 4 18
Accuracy 0.5 0.8 1.0 0.75 0.78

Confidence 3.75 4.6 4.8 4.0 4.33
Ease 4.0 4.2 4.0 4.0 4.05

Table 3: Task 1 network characterization results.

4.2 Tasks
We designed Task 1 to assess how well analysts could char-

acterize network data sets using GraphPrism. We employed
a methodology similar to Wickham et al.’s line-up [33] for
testing the “inferential validity” of a visualization technique.
Specifically, we asked analysts to choose a real network data
set from a line up with synthetic data using the GraphPrism
diagrams. We utilized four data sets from prior work [5,
11, 30], summarized in Table 2. In each trial, participants
viewed ten GraphPrism diagrams, one corresponding to the
real-world data, and nine constructed from synthetically gen-
erated data. Synthetic data sets were sampled using a vari-
ety of random graph models in order to increase task diffi-
culty. Trials were presented in a random order.

As we did not expect participants to be familiar with the
data sets, they were given summary statistics about the real
network shown in Table 2. They were asked to choose the
diagram which corresponded to the real data, selecting a
second choice as well if desired. An example of the task for
the Jazz network (using 6 diagrams) is shown in Figure 41

Task 2 was designed to test whether GraphPrism could
facilitate rapid comparison and classification of multiple net-
work data sets. Analysts viewed 12 GraphPrism diagrams,
each generated from synthetic networks constructed using
one of the following random graph models: Erdös-Renýı,
Barabási-Albert, Growth Model, and Preferential Attach-
ment. For each model, parameters were varied in order to
generate three qualitatively different GraphPrism diagrams.
Each participant was briefed on how the 12 diagrams were
constructed and asked to sort them into four groups of three.

1The real Jazz network is (3). Notice the larger diameter,
higher global transitivity, and absence of local bridges re-
sulting from the many clique structures formed by bands.

Subject Pairwise Accuracy Confidence Ease

1 12 3 3
2 12 3 4
3 12 5 5
4 12 4 4
5 8 4 4
6 8 3.5 4
7 5 4 3

Average 9.9 3.8 3.9

Table 4: Task 2 network classification results.

4.3 Results
Table 3 summarizes the results for Task 1. Overall, clas-

sification accuracy was high (µ = 0.78), though it did vary
across data sets. Participants generally engaged in one of
two distinct strategies. The first was matching summary
statistics, such as the global transitivity or number of com-
ponents, to distinctive patterns in the GraphPrism diagram,
as illustrated in the example in the prior section. The sec-
ond strategy was to extrapolate what the diagrams should
look like based on inferred structural features of the network.
For instance, some participants inferred that the Jazz net-
work would include a number of cliques and a low number of
structural bridges, allowing them to identify the real Graph-
Prism. Analysts reported their subjective confidence in the
selection and the ease of the task using a 5-point Likert
scale; higher ratings indicated more favorable scores. Over-
all, the reported confidence was high (µ = 4.33), with higher
ratings for tasks performed more accurately. Judgments of
ease (µ = 4.05) were relatively uniform across tasks.

Correctness in Task 2 was evaluated using a pairwise accu-
racy metric: we compared the number of correctly classified
pairs to the total number of pairings in the data set. Ran-
dom guessing yields an expected value of 2.18 correct pairs
out of 12, providing a baseline for our results. As shown in
Table 4, 4 of the analysts performed the task perfectly, with
all 7 performing better than chance. Moreover, all partici-
pants completed the task easily in under 5 minutes. All of
the analysts made reference to the “overall patterns” evident
in each GraphPrism diagram, and three of the four who per-
formed the task perfectly reported starting with a “pattern
recognition” approach. Despite the high performance, the
average confidence (µ = 3.8) and ease (µ = 3.9) were lower
than in Task 1, perhaps due to the novelty of the task.

While this evaluation does not compare GraphPrism to
other techniques such as node-link diagrams or adjacency
matrices, it provides some evidence that GraphPrism en-
ables effective characterization, comparison, and classifica-
tion of network data sets. The fact that analysts were able to
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Figure 5: The Network Science collaboration network. Using the Connectivity facet, we have selected nodes
which can reach the fewest other nodes within 3 hops, representing ‘outsiders’.

perform tasks quickly and with relatively high accuracy after
minimal training indicates that GraphPrism shows promise
in providing an overview of network structure.

4.4 Design Feedback
After completing the evaluation tasks and gaining famil-

iarity with the diagrams, analysts provided feedback on the
GraphPrism design. One area in which experts believed
GraphPrism excelled was in representing multiple levels of
structure. Analysts praised the immediate visibility of the
degree and transitivity distributions and the availability of
information about the existence of particular types of nodes
or edges via focusing attention on a single row or cell of a
facet. Analysts appreciated the seamless transition to mak-
ing inferences about properties of larger structures in the
graph, such as the size of the largest component.

Some of the analysts indicated that a node-link diagram
would have complemented insights gained from the Graph-
Prism diagrams. Two of the analysts, for instance, spec-
ulated about the existence of core-periphery structures in
some networks, something not available in the GraphPrism
diagram but potentially visible in a node-link view. Two
analysts also pointed out that the GraphPrism diagram ob-
scured the existence of singletons. The primary takeaway re-
garding the design of the interactive system was that Graph-
Prism was best coupled with a node-link diagram such that
analysts could drill down from the GraphPrism overview to
details about node and edges available in a node-link layout.

5. INTERACTIVE SYSTEM
Informed by the results of our paper prototype study, we

have developed an interactive system that combines Graph-

prism with standard node-link diagrams. Below, we describe
the system and demonstrate how it can be used to perform
relevant network analysis tasks. We illustrate how Graph-
Prism and node-link views can complement each other in
two ways: (1) GraphPrism provides an overview of impor-
tant properties not visible in the node-link view and (2)
GraphPrism can serve as a selection mechanism for identi-
fying and inspecting nodes and edges of interest.

Our interactive system can be used to accomplish relevant
network analysis tasks, ranging from the summarization of
important global properties, to the discovery of communities
and structures of interest, to the identification of individual
nodes and edges which may be important. As an example,
we utilize data from the largest connected component of
the network science co-authorship graph described earlier;
this component contains 379 nodes (authors) and 914 edges
(co-authorship ties). The network is large enough to begin
to pose a challenge for traditional node-link diagrams and
adjacency matrices, but small enough to discuss thoroughly
in the remainder of this article.

5.1 Complementing the Node-Link Diagram
The node-link diagram is rendered using a standard force-

directed layout. Users can adjust a gravitational parameter
which controls how strongly nodes are attracted to the center
and a charge parameter which controls how strongly nodes
repel one another. Attributes of individual nodes or edges
are available via mouseover or selection.

As shown in Figure 5, the GraphPrism for this data set
is rendered with 6 facets: Connectivity, Transitivity, Den-
sity, Conductance, Jaccard, and MeetMin. Swapping in ad-
ditional metrics is simple; for instance, one can add In-
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Figure 6: Using GraphPrism and node-link views
in tandem, we identify an interesting bridge which
spans a distance of 8 to 10 hops.

Connectivity and Out-Connectivity for directed graphs. Both
the node-link diagram and GraphPrism were implemented
using the Data-Driven Documents (D3) framework [10].

Within each facet, values are encoded by mapping color
intensity approximately to a logarithmic scale. Each facet is
assigned a unique color hue. We ensure that cells containing
non-zero values are visually distinguishable from those with
zero values. The color then ramps from grey, through darker
hues, to black. Black indicates that (nearly) all the entities
in the graph are represented in that cell. As in the Karate
example in Section §3.4, the static image alone allows us to
quickly infer many properties about the network.

The first row of the Connectivity facet shows that node
degrees appear to follow roughly a power-law distribution:
there are many nodes with low degree and few with large
degree. At ` = 10, we see that most nodes can reach one
another, giving us a sense of the effective diameter, even
though the true diameter is much greater. In the Transi-
tivity facet, we see that global transitivity is relatively high
(roughly 0.45), and from the first row we note a high number
of nodes with clustering near 1 (to be expected given that
papers with multiple authors form cliques).

5.2 Interaction via Linked Selection
Our system supports linked selection (brushing & link-

ing) between GraphPrism facets and the node-link diagram.
Selecting the fifth cell in the first row of Connectivity high-
lights the node with the highest number of collaborators. We
can quickly identify this node as Albert-László Barabási —
a prominent author in the community. While high-degree
nodes are visible in the node-link view, it is difficult to iden-
tify the most-connected node as quickly without an aid.

In Figure 5, the leftmost colored cell in the third row of
Connectivity has been selected, showing nodes which can
reach the fewest nodes (< 5%) within 3 hops. Selected ele-
ments (nodes or edges) are highlighted in red in the node-
link view, allowing us to quickly identify these peripheral
nodes. The cell selected is in row ` = 3; accordingly the 3-
neighborhoods of the selected nodes are highlighted as well,
with color ranging from black to blue to represent the short-
est distance to any selected nodes. If an edge is selected, the
neighborhoods of incident nodes are highlighted. All passive
elements are colored gray to reduce saliency.

Often the GraphPrism and node-link views work in tan-
dem to surface interesting elements. For example, when
looking for bridges, we might start with the Jaccard facet,
shown in more detail in Figure 6. Selecting the circled
cell (leftmost column, 4th row) highlights 31 bridges in the
graph. The node-link view then reveals one edge which ap-
pears to span quite a distance. When the cell below it is se-
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Figure 7: Viewing the conductance facet for a se-
lected node, we see a possible natural community
boundary at ` = 3 or 4.

lected the edge disappears, indicating that the edge bridges
a path of length 8 to 10. This signifies a potentially impor-
tant collaboration linking otherwise distant elements.2

Users can iterate through a set of selected elements (nodes
or edges) using the left and right arrow keys. As each el-
ement is selected, the corresponding neighborhood is high-
lighted as above. Within each row of each facet, the cell
corresponding to the selected element is highlighted using a
yellow outline stroke, providing a quick visual summary of
how metric values for that element vary with `. Pictured
in Figure 7 is the Conductance facet with cells highlighted
for a single node. Here we see that conductance values dip
appreciably at ` = 3 and 4, signaling the possible presence
of a meaningful community boundary around the 3- and/or
4-neighborhood of the selected node.3 Cells corresponding
to the selected node are highlighted in other facets, as well,
enabling inspection of other structural features.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a novel visualization tech-

nique called GraphPrism for the analysis of large, complex
networks. By calculating distributions of metrics over neigh-
borhoods of increasing size, we create a set of multi-scale
histograms that we call ‘facets’. The composition of these
facets yields a compact, scalable visualization which sur-
faces a number of interesting structural features of a graph.
Through paper prototype studies with network analysis ex-
perts, we found that GraphPrism provides a useful visual
overview of graph datasets. We also introduced an interac-
tive network analysis system that links GraphPrism facets
with a node-link diagram. Our case study illustrates how
this combination of features can aid analysts in exploring
graph data.

One avenue for future work is exploring algorithms for
efficient calculation of graph metrics across multiple net-
work neighborhoods. Some parallelization can be trivially
achieved by separately starting calculations at each indi-
vidual node or edge. More sophisticated approaches might
eliminate unnecessary computation via dynamic program-
ming or other methods. Also, while the individual metrics
used in this paper are relatively cheap to compute, one might
wish to apply the GraphPrism approach to more computa-
tionally complex metrics such as betweenness centrality. In
such cases, approximation methods may be needed.

2Additional investigation reveals that this edge represents
a paper by G. Bianconi and A. Capocci entitled “Number
of Loops of Size h in Growing Scale-Free Networks”, which
interestingly creates its own sizable loop in this network.
3This node is connected peripherally to the network. After
3 hops, a paper (clique) with 5 authors is added, and after
4, another 3-author collaboration, explaining the decrease
in conductance. After this, the network branches out again.



Another future step will be to improve our interactive vi-
sualization through continued evaluation. We intend to eval-
uate our interactive prototype with network analysis experts
in order to solicit feedback on our design. One specific goal
is identifying useful data to surface in a detail panel, thereby
facilitating analysis of both aggregate and individual selec-
tions. In addition, through a comparison with other visu-
alization methods for large networks, we hope to gain more
insight into the strengths and weaknesses of our approach.
Future research might also identify alternative interaction
techniques well-suited to GraphPrism views. For instance,
when dealing with large graphs where complete node-link
or matrix views are ill-advised, how might GraphPrism be
used to select subgraphs for closer inspection?

Finally, while our current metrics provide insight into
simple directed and undirected graphs, an important mo-
tivation underlying the modular approach to constructing
GraphPrism is the ability to adapt this technique to multiple
graph types, including hypergraphs and bi-partite networks.
A corresponding area for future work is to identify metrics
which may be more suitable for analyzing these types of
graphs which can be added as new GraphPrism facets.
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