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ABSTRACT

Analysts regularly wrangle data into a form suitable for com-
putational tools through a tedious process that delays more
substantive analysis. While interactive tools can assist data
transformation, analysts must still conceptualize the desired
output state, formulate a transformation strategy, and specify
complex transforms. We present a model to proactively sug-
gest data transforms which map input data to a relational for-
mat expected by analysis tools. To guide search through the
space of transforms, we propose a metric that scores tables
according to type homogeneity, sparsity and the presence of
delimiters. When compared to “ideal” hand-crafted transfor-
mations, our model suggests over half of the needed steps; in
these cases the top-ranked suggestion is preferred 77% of the
time. User study results indicate that suggestions produced
by our model can assist analysts’ transformation tasks, but
that users do not always value proactive assistance, instead
preferring to maintain the initiative. We discuss some impli-
cations of these results for mixed-initiative interfaces.

ACM Classification: HS5.2 [Information interfaces and pre-
sentation]: User Interfaces — Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Data transformation, data cleaning, end-user pro-
gramming, mixed-initiative interfaces, data analysis

INTRODUCTION

The increasing scale and accessibility of data— including
government records, web data, and system logs — provides
an under-exploited resource for improving governance, pub-
lic policy, organizational strategy, and even our personal lives
[23]. However, much of this data is not suitable for use by
analysis tools. Data is often stored in idiosyncratic formats or
designed for human viewing rather than computational pro-
cessing (e.g., cross-tabulations within spreadsheets).

These hurdles require that analysts engage in a tedious pro-
cess of data transformation (or data wrangling) to map in-
put data to a form consumable by downstream tools. Both
prior work [3] and our own conversations with analysts in-
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dicate that wrangling is one of the most time-consuming as-
pects of analysis. As a result, domain experts regularly spend
more time manipulating data than they do exercising their
specialty, while less technical audiences may be excluded.

Analysts typically wrangle their data by writing scripts in
programming languages such as Python or Perl or by manu-
ally editing the data within spreadsheets. To assist this pro-
cess, researchers have developed novel interactive tools. Pot-
ter’s Wheel [21] and Google Refine [11] are menu-driven
interfaces that provide access to common data transforms.
Wrangler [13] extends this approach by (a) automatically
suggesting applicable transforms in response to direct ma-
nipulation of a data table and (b) providing visual previews
to aid transform assessment. Each of these tools enable
skilled practitioners to rapidly specify transformation work-
flows; however, they fall short in helping users formulate data
transformation strategies. Given an input data set, what is the
desired output state? What operations are possible and which
sequence of operations will result in suitable data?

One complication is that there is no single “correct” output
format. A data layout amenable to plotting in Excel is of-
ten different than the format expected by visualization tools
such as Tableau. That said, one format is required by many
database, statistics and visualization tools: a relational data
table. In this format, each row contains a single data record
and each column represents a variable of a given data type.

In this paper, we augment the Wrangler transformation tool
[13] to aid transform discovery and strategy formation. We
take a mixed-initiative [10] approach to end-user program-
ming: we generate proactive suggestions to improve the
suitability of a data set for downstream tools. In other words,
we want the computer to help analysts get data into the for-
mat that computers expect. We make three contributions:

A model of data table “suitability” that enables generation
of proactive transform suggestions. We introduce a metric
that indicates the degree to which a table adheres to a rela-
tional format usable by downstream tools. We use this metric
to guide automated search through the space of possible op-
erations. As the search space is too large to evaluate at inter-
active rates, we couple our metric with empirically-derived
heuristics for pruning the space of candidate transforms.

An analysis of algorithm behavior assessing the strengths
and limitations of our suggestions. Across a set of realistic
transformation tasks, we find that our method suggests over
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Figure 1: The Wrangler User Interface. Clockwise from the top: (a) tool bar for transform specification, (b) data table
display, (c) history viewer containing an exportable transformation script, (d) suggested transforms. The effect of the
selected Fold transform is previewed in the data table display using before (top) and after (bottom) views.

half (53%) of the steps used in “ideal” transformations. In
these cases our suggestions exhibit high precision: the top-
ranked suggestion is the preferred option 77% of the time.

A user study examining how end users apply proactive sug-
gestions. We find that our method can help users complete
transformation tasks, but not always in the manner that we
expected. Many users express a desire to maintain control
and roundly ignore suggestions presented prior to interaction
with the data table. However, users do not express similar
concerns when suggestions generated by our proactive model
are inserted among “reactive” suggestions specific to an ini-
tiating interaction. User assessment of suggestions appears
to improve when users see themselves as the initiators.

We also present a redesign of the Wrangler interface to bet-
ter surface the space of available data transforms and param-
eters. The resulting interface enables manual specification
or refinement of transforms and facilitates learning from the
examples provided by automated suggestions.

RELATED WORK

Researchers have proposed numerous strategies for simplify-
ing programming tasks, including domain-specific languages
[18], visual programming [1], keyword programming [17],
and programming-by-demonstration [2]. Myers et al. [20]
provide a survey of these approaches. Here, we review prior
work in end-user programming tools for data transformation.

Menu-Driven Data Transformation

Both database and HCI researchers have devised graphical
interfaces [6, 11, 21] for reformatting and cleaning data.
Each of these tools share a similar design: a data table

view and a set of menu-accessible transformation operators.
Google Refine [11] combines menu-driven commands with
faceted histograms for data profiling and filtering. Ajax [6]
similarly provides an interface for transform specification
with advanced facilities for entity resolution. Potter’s Wheel
[21] is a graphical interface for authoring statements in a
declarative transformation language and offers extensible fa-
cilities for data type inference. Each of these tools enable
skilled practitioners to transform data more rapidly. How-
ever, each imposes a learning curve: users must learn both
the available operations and how to combine them to achieve
common data transformation needs.

Programming-by-Demonstration Systems

Another class of targeted data manipulation tools rely on pro-
gramming by demonstration (PBD) techniques [2]. Potluck
[12] uses simultaneous editing [19] to help users perform
data integration. Karma [22] infers text extractors and trans-
formations for web data from examples entered in a table.
Vegemite [16] extends CoScripter [15] to integrate web data,
automate the use of web services, and generate shareable
scripts. Dontcheva et al. [4] use PBD techniques to enable
extraction, integration, and templated search of web data.
Gulwani [8] introduces an algorithm for learning expres-
sive string processing programs from input-output examples.
PADS [5] infers nuanced data parsers from a set of positive
examples. Though well-suited for their intended tasks, these
systems are insufficient for the more general demands of data
wrangling. For example, while text extraction and mass edit-
ing are quite valuable for data transformation, the above tools
lack other needed operations such as table reshaping, aggre-
gation, and missing value imputation.



Closely related to our current work is Harris and Gulwani’s
[9] system for learning table transformations from an exam-
ple input-output pair. Given input and output tables, the sys-
tem can infer a program that filters, duplicates, and/or reorga-
nizes table cells to generate the output table. These resulting
programs can express a variety of table reshaping operations.

Our work differs in multiple respects. First, the approach
of Harris and Gulwani treats table cells as atomic units, and
thus has limited expressiveness. For example, it does not
support transformations involving text editing or extraction.
Second, their approach requires that a user specify both input
and output examples, and thus know the details of the desired
output in advance. In the case of large tables, creating the
output example may be tedious. On the other hand, provid-
ing a small example from which the proper transformation
can be inferred may require significant insight. Third, the
actual mechanics of the resulting transformation are opaque,
potentially limiting user skill acquisition. In contrast, our ap-
proach does not accept an output example but instead lever-
ages the assumption that the user desires a relational data
table with homogeneous columns. This enables our system
to offer proactive suggestions in the context of a full-featured
data transformation environment.

DATA WRANGLER

In this work, we introduce extensions to Data Wrangler
[13], a system that combines multiple end-user program-
ming strategies to facilitate specification of data transforma-
tion scripts. Underlying Wrangler is a declarative domain-
specific language that includes a comprehensive set of trans-
formation operators and enables code-generation of reusable
programs (e.g., Python and JavaScript code). Wrangler pro-
vides natural language descriptions and visual previews with
which users can assess and verify transform behaviors. Wran-
gler uses programming-by-demonstration methods (c.f., [8,
19]) to specify regular expression patterns and row predi-
cates. In addition, Wrangler generates automatic transform
suggestions in response to user interactions with a data table.

The Wrangler Transformation Language

The transformation scripts produced by Wrangler consist of a
linear sequence of individual transforms, expressed in an un-
derlying declarative language. The transforms support com-
mon data cleaning and reformatting tasks such as splitting
or extracting text values, deleting or merging columns, batch
text editing, interpolating values, and reorganizing cell lay-
out (table reshaping). Table 1 summarizes the most com-
mon transforms surfaced in the user interface. The language
is the direct descendant of the Potter’s Wheel language [21]
and draws on concepts introduced in SchemaSQL [14]. This
prior work [14, 21] also provides formal proofs of the lan-
guage’s expressiveness, showing it is capable of expressing
any one-to-one or one-to-many transform of cell values.

In addition, the declarative nature of the language facili-
tates implementation across a variety of platforms. Thus
the Wrangler tool can generate executable code for multi-
ple runtimes, including Python and JavaScript. For example,
we often wrangle a data subset within the user interface and
then export a resulting Python script to transform much larger
databases (millions or more rows) on a server machine.

Transform Description

Cut Remove selected text from cells in specified columns.
Delete Remove rows that match given indices or predicates.
Drop Remove specified columns from the table.

Edit Edit the text in each cell of the specified columns.
Extract Copy text from cells in a column into a new column.
Fill Fill empty cells using values from adjacent cells.
Fold Reshape a table into columns of key-value sets; se-

lected rows map to keys, selected columns to values.
Merge Concatenate multiple columns into a single column.
Promote Promote row values to be the column names.
Split Split a column into multiple columns by delimiters.
Translate  Shift the position of cell values by a given offset.
Transpose Transpose the rows and columns of the table.
Unfold Reshape a table by mapping key-value sets to a col-
lection of new columns, one per unique key.

Table 1: The Wrangler Transformation Language.
Each transform accepts as parameters some combi-
nation of enumerable values and text, row, or column
selection criteria. For further discussion, see [13, 21].
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Figure 2: An example of table reshaping. A Fold op-
eration transforms the table on the left to the one on
the right; an Unfold operation performs the reverse.

A critical feature of the language design is its compactness:
with only a dozen operators, analysts can complete a wide
variety of data cleaning tasks. Moreover, most operators ac-
cept identical parameter types, namely row, text and column
selections. The compact language design is intended to fa-
cilitate exploration and learning by limiting the number of
possible operations considered. An additional benefit is that
this reduced set of formally-defined operators lends itself to
computational search over operation sequences.

The Wrangler User Interface

The Wrangler user interface (shown in Figure 1) allows an-
alysts to specify transforms in the underlying language. The
interface contains four primary components: along the top of
the display is a tool bar for transform specification, the right
panel contains an interactive data table display, and the left
panel contains both automated transform suggestions (top)
and an interactive history viewer describing the current script
(bottom). Similar to other transformation tools [11, 21], a
transform can be specified manually by selecting a transform
type from the tool bar and then entering in desired parameter
values. However, Wrangler provides additional facilities to
aid transform specification and verification.

Automated Transform Suggestions
Wrangler’s data table display supports a set of common inter-
actions, such as selecting rows and columns by clicking their



headers or selecting and manipulating text within table cells.
While these actions can be used to specify parameters for a
selected transform type, manual specification can be tedious
and requires that users have a firm command of the available
transforms. To facilitate rapid specification, Wrangler infers
applicable transforms directly from an initiating interaction.

After the user makes a selection on the data table, Wran-
gler generates automatic suggestions in a three-phase pro-
cess. First, Wrangler infers a set of possible parameter values
in response to the user’s selection. Example parameters in-
clude regular expressions matching selected text substrings
and row predicates matching selected values, generated us-
ing programming-by demonstration methods [13, 19]. Sec-
ond, Wrangler enumerates a list of transforms that accept the
inferred parameters. Third, Wrangler filters and ranks the re-
sulting transforms according to historical usage statistics and
heuristics intended to improve result quality. These trans-
forms then appear as a ranked list of suggestions in the inter-
face, where users can preview their effects and modify their
parameters. For more details regarding the Wrangler infer-
ence engine, we refer interested readers to Kandel et al. [13].

Assessing Transform Effects

When creating data transformation scripts, users often find
it difficult to understand a transform’s effect prior to exe-
cuting it [13]. To aid in transform assessment, Wrangler
presents suggestions using natural language descriptions to
aid quick scanning of the suggestions list. When a transform
is selected, Wrangler uses visual previews to enable users to
quickly evaluate its effects without executing it. When fea-
sible, Wrangler displays in-place previews in the data table,
drawing users’ attention to the effect of the transform in its
original context. For complex reshaping operations, Wran-
gler shows before and after images of the table and uses color
coding to help users perceive the correspondence of cells be-
tween the two states (Figure 1b).

Design Issues and Opportunities

Wrangler’s automated suggestions and visual assessment fea-
tures help analysts iteratively hone in on a desired transfor-
mation. A user study by Kandel et al. [13] finds that these
mechanisms can accelerate specification and facilitate dis-
covery of applicable transforms. However, the initial Wran-
gler design also suffers from some shortcomings.

Surfacing Transform Parameters

While natural language descriptions enable users to scan sug-
gestions, they provide little guidance for how to specify pa-
rameters manually. This disconnect constitutes a missed op-
portunity: in addition to accelerating specification, suggested
transforms might serve as instructive examples of more ad-
vanced system use. The initial Wrangler design also buries
transforms within hierarchical menus, limiting visibility.

In response, we redesigned the Wrangler user interface to
better surface available transforms and their parameters. The
tool bar along the top of the user interface makes all trans-
forms immediately visible, and the parameters for a current
transform appear directly below. As users preview suggested
transforms, the complete parametrization is now visible in
the tool bar. We apply linked highlighting between parame-

ters in natural language descriptions and those in the tool bar.
In terms of Green’s Cognitive Dimensions of Notation [7],
this redesign is intended to improve the visibility of options
and decrease the viscosity of manually tuning inferred param-
eters. In terms of Horvitz’s principles for mixed-initiative in-
teraction [10], the design provides a shared working memory
by which users can more directly observe (and thus hopefully
learn from) system-initiated actions.

Specifying Transforms and Formulating Strategies
Observing user activity with Wrangler reveals that analysts
may have difficultly formulating data cleaning strategies [13].
Novice users are often unsure which target data state is the
one best suited for subsequent analysis. Even when the target
data state is known, users are often unsure which sequence
of operations is needed to reach that state. We have observed
that both novice and expert users may consequently resort to
blind exploration of the available transforms. This process
is hampered by the fact that some operations remain diffi-
cult to specify despite the aid of automated suggestions. In
particular, reshaping operations that significantly alter the ar-
rangement of table cells are hard to conceptualize and apply.
However, it is exactly these operations that are often neces-
sary to map input data to a format usable by analysis tools.

We attempt to address these issues by extending Wrangler to
provide proactive suggestions in addition to “reactive” sug-
gestions initiated by user actions. Our proactive suggestions
are intended to lead users towards effective cleaning strate-
gies and facilitate the specification of complex reshaping op-
erations. After describing the details of our proactive sug-
gestion algorithm, we go on to analyze the behavior of our
algorithm and evaluate our approach in a user study.

PROACTIVE DATA WRANGLING

We now describe extensions to Wrangler to automatically
generate proactive suggestions. In addition to the previous
method of suggesting transforms in response to user-initiated
actions (e.g., selecting a row or column), Proactive Wran-
gler continually analyzes the current state of the data table
and provides suggestions to make the table more suitable for
import into a relational database or analytic tool. These sug-
gestions are intended to both accelerate the work of experts
and guide novices towards a desired outcome. For exam-
ple, we wish to surface complex reshaping operations (fold
and unfold) within a “recognition” task, rather than a harder
“recall” task in which the user needs to determine which op-
eration they require and manually initiate its specification.

A Proactive Data Cleaning Scenario

To give a sense of how proactive suggestions ease the data
cleaning process, Figure 3 illustrates a complete scenario
where a user transforms data imported from an Excel spread-
sheet (Table 1 within Figure 3) into a dense relational format
(Table 6). First, Wrangler analyzes the initial table state and
makes 3 proactive suggestions. The user ignores them and
instead manually selects and deletes the first two rows, turn-
ing Table 1 into Table 2. Then the user chooses to execute the
2nd suggestion (shown in bold), Split column 2 on ‘:’, which
transforms the data into Table 3. Wrangler continues proac-
tively suggesting additional transforms, and the user can sim-
ply pick the desired ones from the list.
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Proactive suggestions:
1. Fill column 1 from above

Proactive suggestions:
1. Unfold column 1 on column 3
2. Unfold column 2 on column 3

Figure 3: Using Proactive Wrangler to reformat raw data from a spreadsheet. The proactive suggestion chosen at each
step is highlighted in bold. In the Wrangler Ul, proactive suggestions are displayed in the suggestions panel (Figure 1d).

Although the above example is small, it is indicative of a
common usage pattern when cleaning data with Proactive
Wrangler. In particular, cleaning often involves executing
a mix of human-initiated and proactively-suggested trans-
forms. Here the user must recognize that rows 1 and 2 are ex-
traneous headers that should be deleted, but Wrangler proac-
tively suggests all other necessary transforms. In the remain-
der of this section, we describe how Wrangler generates, fil-
ters and ranks these proactive suggestions.

A Metric for Data Table “Suitability”

We define a suitable data table as one that can be loaded
and effectively manipulated by an analytic tool or relational
database. These tools often expect data in a relational format
where each row contains a single data record and each col-
umn represents a variable of a given data type. Although the
raw data in Table 1 of Figure 3 is human-readable, it is not
suitable for analytic tool or database import because of its ir-
regular structure: it contains extraneous header rows, empty
rows, and telephone/fax numbers are located in cells mixed
with other strings, separated by a colon delimiter (e.g., “Tel:
(800)645-8397). In contrast, the compact relational result
in Table 6 is more usable by downstream tools.

We created a metric that assesses how amenable a table is for
import into downstream tools. Our metric rewards column
type homogeneity (H), fewer empty values (E), and lack of
delimiters (D). A lower score indicates a more suitable ta-
ble. A homogeneous, dense, delimiter-free table (e.g., Table
6 in Figure 3) has a “perfect” score of zero; tools expecting
relational tables should be able to import it.

For a table T with rows R and columns C, we define the table

suitability S as

E(T)+D(T)
R[|C|

ZCECHC(T)> (1)

s = (1-E=F

where |R)| is the number of rows, |C| is the number of columns,
and each component function is defined as follows.

H, is the homogeneity of column c, the sum of squares of the
proportions of each data type Type present in that column:

Ho=Y

Type

| €R:¢; € Type|\’
<|l€ ¢ € ype|) )

R|

Wrangler parses each cell’s contents into the most specific
possible type, which can be a built-in like number or date, a
user-defined type like zip code or country name, or a generic
string type for those that fail to match a more specific type
(for more details regarding Wrangler’s type inference, see
Kandel et al. [13]). If 75% of values in a column are num-
bers and 25% are dates, then the column’s homogeneity is

(0.75)* 4 (0.25)* = 0.625. If 50% are numbers and 50%
are dates, then the column is less homogeneous: (0.5)2 +

(0.5)> = 0.5. A column that contains only values of a sin-
gle type has the maximum possible homogeneity score of 1.
Our table suitability score averages the homogeneity of all
columns and subtracts that average from 1, so that higher ho-
mogeneity leads to a lower (more “suitable”) score.



E is the count of empty cells. We favor denser tables, as
missing values may indicate a sub-optimal data layout possi-
bly containing replicated values in adjacent columns.

D is the count of delimiters. A delimiter is a comma, colon,
pipe, or tab character. We favor tables with fewer delimiters,
as those tables are more likely to consist of atomic data rather
than compound elements that could split into specific values.

Our suitability score is invariant of table size, since its terms
are all normalized by the numbers of rows and columns.
However, one of its limitations is that it does not penalize
data loss. In the extreme pathological case, deleting all cells
except for one can lead to a perfect score of 0 (assuming
that last cell contains no delimiters). In the next section, we
describe how we designed Proactive Wrangler to avoid sug-
gesting such undesirable transforms.

Poor scores in each component of Equation 1 make a table
ill-suited for tool import. In databases and analytic tools, a
column with a mixture of data types typically can only be im-
ported as uninterpreted strings. A column with many delim-
iters may be treated as strings rather than composite values
of more specific types. A column with many empty cells of-
ten indicates replicated values in adjacent columns. All these
situations can limit downstream analyses.

Generating Candidate Transforms

Proactive Wrangler automatically suggests transforms that
improve a table’s suitability score by first generating candi-
date suggestions, and then evaluating, filtering, and ranking
these candidates before presenting them to the user.

One way to avoid suggesting undesirable lossy transforms
is to explicitly penalize data loss when ranking suggestions;
however, this suffers from efficiency problems because all
possible suggestions must still be generated, evaluated, and
ranked. Instead, we adopt a simpler approach: we prune the
space of suggestions to ensure that Proactive Wrangler never
makes suggestions that involve significant data loss. We limit
lossy transforms to deletions of mostly-empty rows (which
often appear in spreadsheet headers or footnotes). We con-
tend that data deletion should be left to the user’s discretion,
and so Proactive Wrangler should only help to compact (fill
and delete empty cells), parse (split on delimiters), and re-
shape (fold and unfold) the table. Thus, it generates the fol-
lowing types of transforms as candidates at each step:

e Fold columns Cy,...,C, using rows Ry,...,R, as keys

e Unfold column C; on column C,

e Split column C into multiple columns using a delimiter
(comma, colon, pipe, or tab)

o Fill all empty cells of row R with values from the left

Fill all empty cells of column C with values from above

Delete all mostly-empty rows (> 75% empty cells)

Delete all empty rows

Delete all empty columns

Since most of these transforms take row and/or column in-
dices as parameters, enumerating all possibilities is both in-
feasible and undesirable. Assuming that a table has |R| rows

and |C| columns, there are O(|R]) possible row fills, O(|C|)
possible column fills and splits, O(2/R - 2I€1) possible folds,
and O(|C|?) possible unfolds. It would take far too much
time to evaluate all possible parameterizations, precluding
interactive response rates. Even if efficiency were not a con-
cern, many parameterizations are undesirable since they trig-
ger degenerate cases of certain transforms.

Informed by our data cleaning experiences and empirical ob-
servations from a corpus of public data sets (described in the
next section), we developed rules to reduce the set of trans-
form parameters and eliminate undesirable candidates:

Fill. Proactive Wrangler only generates fill candidates if
the majority (> 50%) of cells in a given row or column are
empty. This type of transform is useful for filling in sparse
key rows (or columns) before doing a fold (or unfold).

Fold. Proactive Wrangler only generates fold candidates us-
ing all columns except for the leftmost one (i.e., Columns 2
through |C|), and using at most the first 3 rows as keys (i.e.,
Row 1, Rows 1-2, or Rows 1-3).

The above rule reduces the number of possible folds from
O(2R. 2y to 3 and covers the majority of observed use
cases for transforming a cross-tabulation into a relational for-
mat. To quantify our intuition, we manually inspected all 114
tables in the 2010 OECD Factbook, an annual publication of
world socioeconomic data sets from oecd. org. For all ex-
cept for 2 of the tables, the only sensible fold used columns
2 through |C|, and for all except for 1 table, the only sensible
fold used at most the first 3 rows as keys. A cursory inspec-
tion of cross-tabulation data sets from Wikipedia, US Bureau
of Justice, and data.gov showed no tables that could be
sensibly folded using columns other than 2 through |C| or
using more than the first 3 rows as keys.

Also, Proactive Wrangler only generates fold candidates if
the leftmost column contains all unique and non-null values
in rows other than the key row(s); otherwise the folded table
will have conflicts. For example, if there were a duplicate
“Australia” row in the table on the left of Figure 2, then the
results of a fold would be ambiguous.

Unfold. Proactive Wrangler only generates unfold candi-
dates of the form “Unfold C; on C,” if all columns except
for C; are completely homogeneous (single-typed) and non-
empty; otherwise the headers in the resulting cross-tab will
not be well-typed. (The values in C; become the data matrix
at the core of the resulting table, so it can have empty cells.)
Also, Proactive Wrangler only generates unfold candidates if
the table has exactly 3, 4, or 5 columns, which corresponds
to 1, 2, or 3 key columns, respectively. Our intuition for im-
posing this limit is similar to why we only restrict folds to
using at most the first 3 rows as keys: it covers the majority
of use cases, as indicated by our data corpus.

The aforementioned rules reduce the number of candidate
transforms from O(2/R! . 2 to O(|R| + |C]). At each step
(e.g., in Figure 3), Proactive Wrangler generates all of these
candidates at once and then evaluates, filters, and ranks them
before presenting them to the user.



Ranking and Presenting Proactive Suggestions

After Proactive Wrangler generates a set of candidate trans-
forms, it executes each of them on the current table and cal-
culates the suitability score for the resulting table. It re-
moves all candidates that result in tables with scores higher
(“worse”) than the current table. We use a slightly modified
scoring method for unfold transforms. The operation “Un-
fold C; on (" transforms the values in column C, into a
2D data matrix at the core of the resulting table. Thus, that
matrix should be scored as an atomic unit rather than as dis-
parate columns. Proactive Wrangler calculates the score im-
provement of an unfold by the change in homogeneity and
density between C; and the resulting data matrix.

Proactive Wrangler then presents the remaining candidates to
the user in the suggestions panel (Figures 1d and 3), sorted
by the amount of improvement (—AS). A user can preview
and execute one of these proactive suggestions or can choose
to ignore them, and instead make a selection on the data table
to surface the ordinary context-dependent suggestions.

CHARACTERIZING PROACTIVE ALGORITHM BEHAVIOR
To assess the quality of our proactive suggestions, we ana-
lyzed the behavior of our algorithm across a collection of di-
verse data sets. For each, we compared the suggestions pro-
duced by our algorithm with “ideal” transformation scripts
constructed by hand. As there is often more than one feasi-
ble “clean” goal state, we strove to transform each data table
into a relational format amenable for import into a database
or analytic tool and also sought to remove extraneous tokens
from fields (e.g., parentheses, leading dashes, etc.).

We compared 20 distinct data sets in our analysis. While
this collection is relatively small, each data set was chosen
because it is representative of a much larger class of data
we have collected. For example, although we only included
three tables from the 2010 OECD Factbook of world socioe-
conomic data, all 114 tables from that source had a format
that matched one of these three canonical tables. Although
we cannot claim that our corpus is a representative sample
of all data that users might want to clean, we strove to select
data of diverse origins, formats, and complexity:

Origins. Our corpus consists of a mix of government and
NGO data (e.g., OECD, US Department of Justice, data.gov),
scientific data (e.g., flower classifications, audiology experi-
ments) and data scraped from websites (e.g., Wikipedia ref-
erence tables, Craigslist apartment rental listings).

Format. Data formats range over cross-tabulations (e.g., left
half of Figure 2), Excel reports intended for human consump-
tion (e.g., Table 1 in Figure 3), line-oriented records with cus-
tom token separators and ad-hoc formats generated by scien-
tific experiments.

Complexity. The most concise cleaning script we constructed
for data sets in our corpus ranged from 1 to 7 transforms in
length (i.e., some data sets were noticeably “dirtier” than oth-
ers). The mean script length was 3.6 transforms.

We now summarize the results of using Proactive Wrangler
to transform the 20 data sets in our corpus. When avail-
able, we always selected the highest-ranking proactive sug-

gestion that would lead us towards the goal state; otherwise
we initiated a selection on the data table and chose to execute
the appropriate context-specific suggestion. Of all executed
transforms, 53% (39/73) were proactive suggestions; the re-
maining 47% (34/73) resulted from human-initiated actions.
When appropriate proactive suggestions appeared, the top-
ranked (#1) suggestion was the preferable choice 77% of the
time (30/39). The lowest rank of any chosen proactive sug-
gestion was 6, and the mean rank was 1.6.

For reference, in the ideal case 100% of all executed trans-
forms would come from the top-ranked proactive sugges-
tion. In reality, our scoring metric is not perfect and there
are certain classes of transforms that Proactive Wrangler is
designed specifically not to offer. For our corpus, the fol-
lowing transforms required human intervention: splitting on
non-standard delimiters, extracting and cutting substrings,
and deleting non-sparse rows and columns. Across our col-
lection, 6 of the corpus tables can be cleaned solely using
proactive suggestions, 9 require a mix of human-initiated se-
lections and proactive suggestions, and 5 require exclusively
human selections. We now discuss each category in turn.

Fully Proactive

Six of the data tables in our corpus (30%) exhibited the best-
case performance for Proactive Wrangler: all of the required
transforms appear as proactive suggestions. This typically
occurs for tables whose individual elements are properly for-
matted but the table itself requires re-structuring.

For example, all 114 tables in the 2010 OECD Factbook
and all 50 state-level crime data sets from the Department of
Justice are cross-tabulations embedded within Excel spread-
sheets. Even though we only included a few samples in our
corpus, the rest of the tables from those sources are identi-
cally formatted. For all of these tables, Proactive Wrangler
suggests to delete the mostly-empty title and footnote rows,
fill in the header key row(s), and then perform the appropriate
fold to get the data into a relational format.

Hybrid

In the common case (9/20 tables, 45%), data must be cleaned
using a combination of user-initiated transforms and proac-
tive suggestions. For these kinds of tables in our corpus,
55% of executed transforms (23/42) came from proactive
suggestions. By design, Proactive Wrangler does not offer
certain types of suggestions, namely of transforms that lead
to data loss. This limitation causes Wrangler to sometimes
get “stuck” at a local optimum point when it cannot gener-
ate any more proactive suggestions. In those cases, human
intervention can allow Wrangler to escape local optima and
resume generating useful proactive suggestions.

For example, in a veteran’s hospital dataset, we first chose
a proactive suggestion to delete all empty rows, but then we
had to manually delete an unnecessary column and remove
(cut) the trailing ‘%’ character from all numbers represent-
ing percentages. After those user-initiated clean-ups, Wran-
gler proactively offers the proper fold suggestion, which we
executed to complete our cleaning task.



Manual

Wrangler cannot offer useful proactive suggestions for data
that require extensive string parsing within individual cells,
which occurred in a quarter of our examples (5/20 tables,
25%). These data sets all require the user to perform cus-
tom string splits, cuts, or extracts. For two of these data
sets, Wrangler “stayed out of the way” and did not offer any
proactive suggestions. For the other three, Wrangler offered
on average two (unhelpful) proactive suggestions. Our find-
ings from the user study (see next section) indicate that users
find it easy to ignore such unhelpful suggestions.

For example, each line in a Craigslist apartment listings
dataset is a string in this format:

$2475/2br - Superb location - (palo alto) pic

To create a table of rental prices, bedroom count, and loca-
tions, one can split each line on the ‘/° character, cut the ‘$’
from the price to make it into an integer, and extract the lo-
cation (e.g., “palo alto”) from within the parentheses. These
types of string manipulations are easier for a human to initi-
ate using Wrangler’s reactive suggestions; it is difficult for an
algorithm to suggest these manipulations a priori with both
high precision and recall. Consequently, Wrangler does not
currently attempt to make proactive suggestions for them.

USER STUDY

We conducted a user study comparing versions of Wrangler
with and without proactive suggestions. We originally hy-
pothesized that proactive suggestions would simplify spec-
ification of commonly-used, but hard-to-specify reshaping
transforms (e.g., fold, unfold), while causing limited distrac-
tion to users specifying other types of transforms. Further-
more, we hypothesized that by lowering the cost of finding
applicable transforms, users would more quickly complete
data cleaning tasks requiring multi-step transformations.

As we will discuss, our results indicate that suggestions gen-
erated by our proactive model can help users discover ap-
plicable transforms, but not always in the manner we antici-
pated. Users often dismissed proactive suggestions presented
prior to an initiating interaction, but made use of those exact
same suggestions when presented later in the session.

Participants

We recruited 16 participants (11 male, 5 female) who had
never used Wrangler before. All were university students
with at least moderate experience programming and using
data analysis tools such as Microsoft Excel or Matlab; all
came from Computer Science or related majors. Participants
received a $15 gift certificate for one hour of their time.

Methods

We evaluated the impact of proactive suggestions by compar-
ing Proactive Wrangler to a baseline version that only gen-
erates suggestions in reaction to user-initiated interactions.
First, we guided each subject through a 15-minute tutorial of
Wrangler, highlighting both proactive and reactive modes.

Next, we had each subject perform data cleaning tasks on
four data sets that were miniature versions of data sets from
our corpus. We designed each task so that, in proactive mode,
helpful proactive suggestions were available at most but not

all steps (the “Hybrid” category from the algorithm behav-
ior study). We imposed a 10-minute limit per task. The four
cleaning tasks were divided into two pairs, each requiring
structurally similar transformations. We gave participants a
paper printout of the desired goal table state for each task.
For a given pair of tasks, we assigned subjects one task using
Proactive Wrangler and the other task using the baseline “re-
active” Wrangler. We counterbalanced task order and Wran-
gler versions across subjects.

After completing the four tasks, we asked subjects to de-
scribe their preferences for reactive versus proactive sugges-
tions. Each study session was administered on a 15” Mac-
Book Pro laptop and recorded using screen capture software.

The first eight subjects used a version of Proactive Wrangler
that displayed proactive suggestions only when there was no
active selection on the data table; as soon as the user makes
a selection, the proactive suggestions were replaced by the
standard reactive suggestions. However, we observed that
most subjects largely ignored the proactive suggestions in
this configuration. After interviewing those subjects about
their rationale, we updated Wrangler to append the top three
proactive suggestions to the list of reactive suggestions nor-
mally generated from a user interaction. In other words,
Wrangler now displayed proactive suggestions regardless of
how the user interacted with it. This modified embedded
proactive interface was seen by the last eight subjects.

Results

We initially expected subjects to complete tasks faster using
Proactive Wrangler, but in fact we found no significant dif-
ference in completion times between proactive, embedded,
or reactive variants (F2 51 = 0.059, p = 0.943 according to re-
peated measures ANOVA). We compared within individual
tasks and controlled for the effects of task order, but found
no significant differences. The average task completion time
was 231 seconds; in only one instance did a user fail to com-
plete a task by going over the 10-minute time limit.

Upon reviewing the usage logs, we found that subjects made
sparing use of proactive suggestions. Most users (11/16,
69%) executed a proactive suggestion at least once. How-
ever, the total number of such transforms was small: in
proactive conditions, subjects executed 1.16 proactive sug-
gestions per task on average, compared to an average of 4.9
reactive suggestions on those same tasks.

To understand why subjects were reluctant to use the proac-
tive suggestions, we reviewed our recorded experiment ses-
sions to identify critical incidents. We identified three recur-
ring patterns: subjects ignoring useful proactive suggestions,
previewing but dismissing suggestions, and viewing sugges-
tions as a last resort. We now discuss each.

Ignoring proactive suggestions

Nearly one-third of the subjects (5/16) simply never pre-
viewed any proactive suggestions, despite having used them
in the tutorial. All of these subjects ignored at least one
proactive suggestion that they later executed after making a
selection and choosing an identical reactive suggestion. For
example, after 137 seconds of work, one subject was almost



done with a task and only needed to perform a final unfold.
The necessary unfold was displayed as the sole proactive
suggestion, but the subject ignored it and spent the next 86
seconds experimenting with selecting columns and specify-
ing various folds and unfolds. He finally chose the correct
unfold and completed his task, at which point he said, “A
proactive suggestion would have really helped me here!”

Once we integrated proactive suggestions among reactive
suggestions, 4 out of the 8 subjects who used the embedded
version ignored a useful proactive suggestion only to click on
it immediately after selecting an unrelated part of the table.
One subject wanted to do a fold when in fact he needed an
unfold (which was proactively suggested but ignored). When
he selected some columns and attempted a fold, he noticed
the proactive unfold suggestion at the bottom of the list and
realized he needed to unfold, so he selected it and completed
his task. This unfold would not have surfaced if he had not
been using the embedded proactive interface.

Previewing, then ignoring, proactive suggestions

Almost half of our subjects (7/16) actually previewed the
effects of a useful proactive suggestion, dismissed it, and a
short time later made a selection and executed the identical
reactive suggestion. As a typical example, one subject pre-
viewed a proactively-suggested unfold transform for a few
seconds. But instead of executing it, he immediately selected
the two columns in the table necessary to have Wrangler re-
actively suggest the same unfold. He then navigated directly
to that unfold transform, previewed, and executed it.

Proactive suggestions as a last resort

Three subjects used proactive suggestions only when they ran
out of ideas for triggering reactive suggestions. For example,
out of the 167 seconds that one subject spent on a task, she
was stuck staring at the table for 60 seconds (36% of total
time) before she looked at the top-ranked proactive fold, pre-
viewed, and then executed it. This was the first (and only)
time that she paused for long enough to actually consider us-
ing proactive suggestions; for the remainder of her session,
she was continually making selections on the table, which
surfaced reactive suggestions and hid the proactive ones.

Study Limitations

All subjects had some programming background, and this
might make them more likely to want to explore rather than
immediately follow proactive suggestions. One subject re-
marked, “Maybe it’s just me, but I like to try [initiating
Wrangler actions ] myself to see how they work.”

We provided specific target end states to subjects and timed
them. Although many analysts have some end state in mind
when working with data, discovering an appropriate end state
is often an exploratory task. Several subjects reported that
given a more ambiguous task, they believe they would be
more likely to explore proactive suggestions, since these may
inform what types of end states are possible.

Summary

Our user study largely disconfirms our original hypotheses.
Users initially ignored proactive suggestions and on aver-
age did not complete tasks more quickly with them. How-

ever, proactive suggestions did aid the transformation pro-
cess. Over two-thirds of subjects executed a proactive sug-
gestion at least once. Suggestions generated by our proactive
model proved helpful when embedded among reactive sug-
gestions and when users failed to complete tasks by other
means. At minimum, proactive suggestions are occasion-
ally helpful and do not disrupt users. Moreover, our results
raise some future research questions for the design of mixed-
initiative interfaces. We discuss these in the next section.

DISCUSSION

In this paper, we presented a metric for table “suitability” that
we apply to generate suggested data transforms. When com-
pared with idealized transformation scripts, our model pro-
duces helpful suggestions for a majority of transform steps
and ranks the preferred suggestion highly. In our own use, we
have found proactive suggestions to be of great assistance:
we regularly use the tool for data wrangling and find proac-
tive suggestions to be a valuable complement. As a result,
we believe our proactive suggestion model helps advance the
state-of-the-art in interactive data transformation.

However, our user study results cast a shadow on our initial
motivations. We find little evidence that proactive sugges-
tions help novice users complete transformation tasks more
quickly or learn data cleaning strategies. Upon review of our
notes and recordings, we hypothesize multiple factors shape
the observed usage patterns: attentional blindness to proac-
tive suggestions, users’ desire to sustain initiative, and insuf-
ficient expertise to recognize the value of suggestions.

Attention Blindness

Some subjects reported that they did not attend to proactive
suggestions, even after using them in the tutorial. Many
instead clicked on the table to initiate reactive suggestions.
On the one hand, subjects expressed appreciation that proac-
tive suggestions did not interrupt their workflow: annoying
distractions are a classic complaint for mixed-initiative in-
terfaces. However, insufficient visibility also seems to be
a problem. Wrangler and similar tools might benefit from
cues that emphasize suggested operations. For instance, sub-
tle animation or colored backgrounds might draw attention to
high-confidence suggestions without interrupting users’ flow.

User Agency and Sustained Initiative

Many users expressed a pre-existing disdain for proactive in-
terfaces. One said: “I hate suggestions popping up at me on
the computer ... I just want to get them out of my way.” Users
described a distrust of automated suggestions in productivity
software, citing examples like the infamous Microsoft Of-
fice ‘paper clip’. Another user, describing his reluctance to
use Wrangler’s proactive suggestions, stated “I knew what 1
wanted to do with the data, so I just did it myself.” Ironically,
users voiced no such qualms regarding reactive suggestions,
which were regularly employed to transform data.

During the first half of our study, only 4/8 subjects (50%)
executed proactive suggestions. After we deployed the em-
bedded proactive interface, 7/8 subjects (88%) executed sug-
gestions generated by our proactive model, including those
inserted into reactive suggestions. It is possible that user as-
sessment of suggested transforms improves when users per-



ceive of themselves as the initiator. We observed several in-
stances of subjects making a selection, choosing an embed-
ded proactive suggestion, and executing it after the same sug-
gestion had already been proactively presented and viewed.

Subjects seem to value suggestions more when they are of-
fered in response to an initiating action, even if the sugges-
tions are generated independently. While speculative, this
observation suggests that future research might examine not
only the utility of suggestions to the stated task goal [10], but
also how interface design and turn-taking affects user recep-
tiveness to those suggestions. What design decisions might
help sustain users’ sense of control in mixed-initiative Uls?

Expertise for Transform Assessment

Our own internal use of Proactive Wrangler and the results of
our study with novice users are at a disconnect. In our expe-
rience, proactive suggestions can reduce the cognitive effort
and also the time required to specify transformations. Ini-
tially we hypothesized that proactive suggestions can speed
transformation by casting transform specification as a “recog-
nition” task, in which users recognize a desired transform
among the list of suggestions. Our user study results suggest
otherwise. Prior knowledge of transformation strategies may
be needed to rapidly “recognize” the value of a transform.
Thus, proactive suggestions may actually be more effective
for expert users than for novices. New preview mechanisms
might better facilitate user assessment of suggestions. For
example, thumbnails of a transform’s effects might be easier
to comprehend than the current textual descriptions.

More sophisticated approaches may be needed to foster learn-
ing of multi-step transformation strategies. In most cases
subjects followed a greedy approach to discovering an ap-
propriate chain of transformations. Some complex transfor-
mations may require steps in which it is difficult to gauge
progress from an intermediate state (e.g., a fold transform
followed by a subsequent unfold). Subjects stated that they
were worried that proactive suggestions might lead them
down the wrong path. However, they often did later select
and execute transforms that were identical to those previ-
ously suggested by Proactive Wrangler. By this point the
subject had explored more alternatives and used interactions
to communicate their intent. It is unclear which of these two
factors gave the user more trust in the system.

Ultimately, users may be the most successful once they are
able to articulate and evaluate their own transformation strate-
gies. Towards this aim, future work might examine alterna-
tive approaches to fostering expertise. Tutorial generation
may be one means. Another possibility is to examine the
effects of multi-step suggestions. New user interface tech-
niques for suggesting and previewing multiple steps may aid
these situations; can a different design prompt multi-step rea-
soning rather than greedy search? More broadly, designing
mixed-initiative interfaces to foster expertise through exam-
ple presents a compelling challenge for future work.
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