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ABSTRACT 
Although information visualization (infovis) technologies 
have proven indispensable tools for making sense of 
complex data, wide-spread deployment has yet to take hold, 
as successful infovis applications are often difficult to 
author and require domain-specific customization. To 
address these issues, we have created prefuse, a software 
framework for creating dynamic visualizations of both 
structured and unstructured data. prefuse provides 
theoretically-motivated abstractions for the design of a wide 
range of visualization applications, enabling programmers 
to string together desired components quickly to create and 
customize working visualizations. To evaluate prefuse we 
have built both existing and novel visualizations testing the 
toolkit's flexibility and performance, and have run usability 
studies and usage surveys finding that programmers find the 
toolkit usable and effective. 
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INTRODUCTION 
Since the introduction of data graphics in the late 1700’s 
[46], visual representations of abstract information have been 
used to demystify data and reveal otherwise hidden patterns. 
The recent advent of graphical interfaces has enabled direct 
interaction with visualized information, giving rise to over a 
decade of information visualization research. Information 
visualization (or infovis) seeks to augment human cognition 
by leveraging human visual capabilities to make sense of 
abstract information [12], providing means by which humans 
with constant perceptual abilities can grapple with increasing 
hordes of data.  

Still, as inexpensive processing and graphics capabilities 
continue to improve, there remains a dearth of information 
visualization applications on current systems. While some of 
the reasons are economic [20], there are technical roadblocks 
as well. One is that information visualization applications are 
difficult to build, requiring mathematical and programming 
skills to implement complex layout algorithms and dynamic 
graphics. Another reason is that infovis applications do not 
lend themselves to “one size fits all” solutions; while 
successful visualizations often reuse established techniques, 
they are also uniquely tailored to their application domain 
(e.g., [31]), requiring customization. This suggests a toolkit 
approach, supporting a diversity of customized applications 
by providing high-level support for common, reusable 
visualization solutions. While infovis toolkits attempting to 
fill this gap have begun to emerge, current offerings [9,17] 
provide a library of existing visualizations rather than a set of 
reusable components for building customized or novel 
visualization designs.  

To address these concerns and better support the design and 
implementation of novel visualizations, we have built 
prefuse1, an extensible user interface toolkit for crafting 
interactive visualizations. Instead of providing only ready-
made infovis “widgets” that can be applied much like buttons 
or checkboxes in traditional GUI tools, prefuse provides a set 
of finer-grained building blocks for constructing tailored 
visualizations. This approach simplifies the composition of 
established methods, such as layout or distortion algorithms, 
while providing an integrated structure in which to develop 
novel techniques and domain-specific designs. The 
formalism of a graph — a set of entities and relations between 
them — is used as the toolkit’s fundamental data structure, 
enabling a broad class of visualizations comprising node-link 
diagrams, containment diagrams, and visualizations of 
unstructured (edge-free) data such as scatter plots and 
timelines (e.g., Figure 1). prefuse includes a library of layout 
algorithms, navigation and interaction techniques, integrated 
search, and more. prefuse is written in the Java programming 
language using the Java2D graphics library.  

                                                             
1 In line with the musical naming conventions of Java interface 
toolkits, the prefuse (pronounced "pref-use") name derives from 
Prefuse73, an electronic musician whose work fueled toolkit 
development. prefuse is intentionally spelled in the lower-case. 
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To provide a principled toolkit flexible enough to support 
yet-to-be-designed visualizations while providing ample 
coverage of the visualization design space, we based the 
design of prefuse on an existing theoretical framework for 
infovis [11,12,15]. This model decomposes design into a 
process of representing abstract data, mapping data into an 
intermediate, visualizable form, and then using these visual 
analogues to provide interactive displays (Figure 2). Prior 
work has validated the model’s expressiveness, providing a 
comprehensive taxonomy of visualization techniques [15].  

In particular, prefuse introduces abstractions for filtering 
source data into visualizable content, providing both 
scalability and representational flexibility, and using 
composable actions to perform batch processing of this 
content, for example data transformation, layout, or color 
assignment. Programmers craft visualizations by stringing 
together actions into executable chains that can then be run to 
manipulate visual data and perform animation. Interactive 
views are then created from this visual data through a highly-
configurable rendering system, to which pre-built controls 
can be added to specify interactive behaviors. This separation 
of concerns provides a degree of flexibility unmatched by 
existing infovis toolkits [9,17], supporting multiple views, 
semantic zooming, data and visual transformations, and 
application extension and customization. prefuse further 
demonstrates that these generalized abstractions can be 
provided without unduly sacrificing performance. 

In the next sections we survey related work, further describe 
the design of prefuse, present example applications, and 
discuss evaluations of the toolkit, including a usability study 
of prefuse’s application programming interface (API).  

MOTIVATION AND RELATED WORK 
The goal of prefuse is to simplify the creation of 
visualizations akin to how GUI toolkits have facilitated the 
design of traditional WIMP user interfaces. As such, prefuse 
draws from pioneering work on input abstractions like the 
model-view-controller [29] and interactor [36] paradigms, 
and the rich history and lessons learned from toolkit 
development [37]. This includes early systems for graph 
layout and editing [23,26] and for including animation in user 
interface toolkits [24]. While cutting-edge 2D user interface 
toolkits such as Piccolo [7] and its predecessor Jazz [8] 
provide facilities useful for information visualization such as 
zooming and animation support, they are not focused on 
supporting common visualization techniques directly. Our 
goal is to construct a framework of higher-level abstractions 
for presentation, navigation, and batch processing of 
interactive objects that simplifies visualization creation while 
affording the freedom to explore new designs. 

The past 15 years have witnessed a rich body of information 
visualization work, featuring the creation of novel 
visualization designs for both structured and unstructured 
data. Examples include TreeMaps [10,44], Cone Trees [42], 
Perspective Walls [34], StarField displays [1], Hyperbolic 
trees [30], DOITrees [13,22], SpaceTrees [39], and more. 
Advances also came in the form of selection, transformation 
and navigation techniques, including focus+context schemes 
[18], space distortion [32], point-of-interest navigation [33], 
and panning and zooming [25,38]. Perhaps the first 
integrated framework for infovis was the Information 
Visualizer (IV) [14], featuring many of the aforementioned 
techniques as well as a centralized “governor” to oversee 
animation and ensure smooth interactive frame rates.  

 

  

 

 

Figure 1. Sample prefuse visualizations. 

(a) Animated radial layout. (b) Force-directed layout with overview. (c) Hyperbolic tree. 

(d) TreeMap. (e) SpotPlot scatterplot. (f) Fisheye graph. (g) Fisheye menu. 



Concurrently, the graph drawing community has devised 
algorithms for the aesthetic layout of graph structures. These 
are given thorough coverage by di Battista et al. in [4]. 
Perhaps the best known software for graph drawing is the 
excellent graphviz package from AT&T [19]. There are 
several other research and commercial graph drawing 
systems, including Marshall et al.’s Graph Visualization 
Framework (GVF) [35], the University of Ljubljana’s Pajek 
[3], and products from Tom Sawyer and yWorks. These 
applications produce static visualizations and do not provide 
programming platforms for highly-interactive visualizations. 
In recent years the graph drawing community has begun 
moving towards more interactive solutions, signaling a 
convergence with the information visualization community. 

While most information visualization research to date has 
consisted of exploring the space of successful designs and 
techniques, the field is now moving into a second phase in 
which this accumulated knowledge is applied in a principled 
manner. Polaris [45] applies infovis techniques to provide a 
powerful system for visualizing relational databases. ILOG 
Discovery [5] enables the declarative construction of data-
linear visualizations such as plots, bar graphs, and 
histograms, but does not handle graph layout or animation. 

The projects most similar in spirit to prefuse are infovis-
specific toolkits such as Fekete's InfoVis toolkit [17] and 
Indiana's XML toolkit [9]. Both provide unified data models 
utilized by visualization “widgets” that encapsulate 
visualizations into monolithic units. With these toolkits, 
programmers can select from multiple existing visualizations 
such as TreeMaps or scatterplots and apply them in a 
straightforward manner.  

Though these toolkits come a long way in making infovis 
techniques accessible, a finer-grained structure supporting 
deep customization and flexible composition of visualization 
methods—and thereby supporting novel approaches—is 
lacking. Within these existing toolkits modularity occurs 
primarily at the level of entire interactive visualizations rather 
than composable techniques, and generalized rendering and 
animation handling are lacking. Creating a new visualization 
requires either starting from scratch or subclassing a pre-
existing visualization; one can not simply select and combine 
diverse techniques, nor craft visualization components that 
leverage techniques dynamically, such as orchestrating 
changes in item appearance (e.g., semantic zooming) or 
providing various views and animated transitions within a 
single component (e.g., switching between scatterplot and 
graph views of data). Introducing new functionality into 
existing visualizations without recoding can also prove 
difficult, as there is little decomposition of visualizations into 
reconfigurable parts. By abstracting visualization techniques, 
rendering, and interaction into composable, reusable units, 
we believe the state of the art can be advanced. 

To meet this goal, we based the design of prefuse on existing 
theoretical models of information visualization. The 

information visualization reference model (or data state 
model) [11,12,15] serves as a conceptual framework for 
structuring infovis applications. The model decomposes 
design into a process of representing abstract data, mapping 
data into an intermediate, visualizable form, processing these 
visual analogues, and then mapping them into interactive 
displays (Figure 2). This model provides a sound base for 
characterizing a vast majority of infovis work (including the 
previous examples), providing a comprehensive taxonomy of 
visualization techniques [15]. Furthermore, Chi has shown 
that the model is functionally equivalent to the time-tested 
data flow model [16] used by 3D toolkits such as VTK [28]. 
We believe this makes the model a fit candidate as the basis 
for future, novel realizations. As discussed in successive 
sections, prefuse contributes a general implementation of this 
model to support a wide range of visualization designs. 

DESIGN OF THE PREFUSE TOOLKIT 
We now describe the toolkit design (illustrated in Figure 2), 
presenting the architecture, basic abstractions, and provided 
libraries for processing and visualizing information. 

Abstract Data 
The prefuse visualization process starts with abstract data to 
visualize, represented in some canonical form. prefuse 
provides interfaces and default implementations of data 
structures for unstructured, graph, and tree data. The basic 
data element type, an Entity, supports any number of named 
attributes (name-value pairs) and provides the base class 
from which structural types such as Node, TreeNode, and 
Edge descend. prefuse provides extensible interfaces for 
input and output of this data, and includes (currently read-
only) support for incremental loading and caching from a 
database or other external store, supporting bounded 
visualizations of data collections too large to fit in memory. 

Filtering 
Filtering is the process of mapping abstract data to a 
representation suitable for visualization. First a set of abstract 
data elements are selected for visualization, such as a focal 
region of a graph [18] or a bounded range of values to show 
in a scatter plot. Next, corresponding visual analogues (called 
VisualItems) are generated, which, in addition to the attributes 
of the source data, record visual properties such as location, 
color, and size. Individual filters are provided in prefuse as 
Action modules, discussed later in this section.  

In the data state model of [15], filtering constitutes the 
Visualization Transformation: reducing abstract data to 
visualizable content. Filtering can also be understood as 
implementing a tiered version of the model-view-controller 
pattern [29]. Abstract data provides a base model for any 
number of visualizations, while filtered data constitutes a 
visualization-specific model with its own set of view-
controllers. This enables multiple visualizations of a shared 
data set by using separate filters, and different views of a 
specific visualization by reusing the same filtered items. 



Managing Visual Items: The ItemRegistry 
prefuse provides three types of VisualItem by default: 
NodeItems to visualize individual entities, EdgeItems to 
visualize relations between entities, and AggregateItems to 
visualize aggregated groups of entities. These items are 
arranged in a graph structure separate from the source data, 
maintaining a local version of the data topology and thereby 
enabling flexible representations of visualized content. If 
desired, additional VisualItem types can also be introduced. 

VisualItems are created and stored in a centralized data 
structure called the ItemRegistry, which houses all the state 
for a specific visualization. Filter Actions request visual 
analogues from the registry, which returns the VisualItems, 
creating them as needed, and records the mapping between 
the abstract data and visualized content. The ItemRegistry 
also contains a FocusManager, overseeing FocusSets of 
items (e.g., selected items and search results). 

To support scalability, the ItemRegistry manages VisualItems 
using a caching approach, tracking item usage and 
performing garbage collection when previously visible items 
are no longer being filtered. This supports the constrained 
browsing of large data structures — including focus+context 
schemes such as generalized fisheye views [18] — by keeping 
only a working set of visualized items in the registry. To 
ensure performance, the ItemRegistry also recycles item 
instances when they are removed from the registry, avoiding 
object initialization costs that can cripple performance.  

Actions 
The basic components of application design in prefuse are 
Actions: composable processing modules that update the 
VisualItems in an ItemRegistry. Actions are the mechanism for 
selecting visualized data and setting visual properties, 
performing tasks such as filtering, layout, color assignment, 
and interpolation. To facilitate extensibility, Actions follow a 
simple API: a single run method that takes an ItemRegistry 
and an optional fraction indicating animation progress as 
input. In addition, base classes for specific Action types such 
as filters and layout algorithms are provided. While Actions 

can perform arbitrary processing tasks, most fall into one of 
three types: filter, assignment, and animator actions. 

Filter actions perform the filtering process discussed earlier, 
controlling what entities and relations are represented by 
VisualItems in the ItemRegistry. prefuse comes with filters for 
visualizing structures in their entirety, and for visualizing 
data subsets determined using degree-of-interest estimates 
[18,22]. By default, filters also initiate garbage collection of 
stale items in the registry, hiding these details from toolkit 
users. Advanced users can optionally disable default garbage 
collection and apply dedicated GarbageCollector actions. 

Assignment actions set visual attributes, such as location, 
color, font, and size, for VisualItems. prefuse includes 
extensible color, font, and size assignment functions and a 
host of layout techniques for positioning items.  

Finally, animator actions interpolate visual attributes between 
starting and ending values to achieve animation, using the 
animation fraction provided by the Action interface. prefuse 
includes animators for locations, colors, fonts, and sizes. 

ActionLists and Activities 
To perform data processing, Actions are composed into 
runnable ActionLists that sequentially execute these Actions. 
These lists form processing pipelines that are invoked in 
response to user or system events. ActionLists are Actions 
themselves, allowing lists to be used as sub-routines of other 
lists. ActionLists can be configured to run once, or to run 
periodically for a specified duration. 

Consider the following example, in which an ActionList 
containing a force-directed layout and color function is 
applied to create an animated visualization that updates every 
20ms. The ActionList parameters are the ItemRegistry to 
update, the duration over which to run (-1 being an infinite 
duration), and the rate at which to re-run the list. 
ActionList forces = new ActionList(registry,-1,20); 
forces.add(new ForceDirectedLayout()); 
forces.add(new ColorFunction()); 
forces.add(new RepaintAction()); 
forces.runNow(); // schedule the list to start now 

 
Figure 2. The prefuse visualization framework. Lists of composable actions filter abstract data into visualizable content and 
assign visual properties (position, color, size, font, etc). Renderer modules, provided on a per-item basis by a RendererFactory, 
draw the VisualItems to construct interactive Displays. User interaction can then trigger changes at any point in the framework. 



The execution of ActionLists is managed by a general activity 
scheduler, implemented using the approach of [24]. The 
scheduler accepts Activity objects (a superclass of ActionList), 
parameterized by start time, duration, and step rate, and runs 
them accordingly. The scheduler runs in a dedicated thread 
and oversees all active prefuse visualizations, ensuring 
atomicity and helping avoid concurrency issues. A listener 
interface enables other objects to monitor activity progress, 
and pacing functions [24] can be applied to parameterize 
animation rates (e.g., to provide slow-in slow-out animation).  

Rendering and Display 
VisualItems are drawn to the screen by Renderers, 
components that use the visual attributes of an item (e.g., 
location, color) to determine its actual on-screen appearance. 
Renderers have a simple API consisting of three methods: 
one to draw an item, one to return a bounding box for an 
item, and one to indicate if a given point is contained within 
an item. prefuse includes Renderers for drawing basic 
shapes, straight and curved edges, text, and images 
(including image loading, scaling, and caching support). 
Custom rendering can be achieved by extending existing 
Renderers, or by implementing the Renderer interface. 

Mappings between items and appearances are managed by a 
RendererFactory: given a VisualItem, the RendererFactory 
returns an appropriate Renderer. This layer of indirection 
affords a high level of flexibility, allowing many simple 
Renderers to be written and then doled out as needed. It also 
allows visual appearances to be easily changed, either by 
issuing different Renderers in response to data attributes, or 
by changing the RendererFactory for a given ItemRegistry. 
This also provides a clean mechanism for semantic zooming 
[38] – the RendererFactory can select Renderers appropriate 
for the current scale value of a given Display. 

Presentation of visualized data is performed by a Display 
component, which acts as a camera onto the contents of an 
ItemRegistry. The Display subclasses Swing’s top-level 
JComponent, and can be used in any Java Swing application. 
The Display takes an ordered enumeration of visible items 
from the registry, applies view transformations, computes the 
clipping region, and draws all visible items using appropriate 
Renderers. The Java2D library is used to support affine 
transformations of the view, including panning and zooming. 
In addition, an ItemRegistry can be tied to multiple Displays, 
enabling multiple views (e.g., overview+detail [12]). 

Displays support interaction with visualized items through a 
ControlListener interface, providing callbacks in response to 
mouse and keyboard events on items. Displays also provide 
direct manipulation text-editing of item content and allow 
arbitrary Swing components to be used as interactive tooltips. 

The prefuse Library 
The core prefuse architecture described above is leveraged 
by a library of significant components. These components 
simplify application design by providing advanced functions 
frequently used in visualizations. 

Layout and Distortion. prefuse is bundled with a library of 
Action modules, including a host of layout and distortion 
techniques. Available layouts include random, circular, grid-
based, force-directed, top-down [40], radial [48], indented 
outline, and tree map [10,44] algorithms. These layouts are 
parameterized and reusable, hence one can write new layouts 
by composing existing modules. In addition, prefuse supports 
space distortion of item location and size attributes, including 
graphical fisheye views [43] and bifocal distortion [32]. 

Force Simulation. prefuse includes an extensible and 
configurable library for force-based physics simulations. This 
consists of a set of force functions, including n-body forces 
(e.g., gravity), spring forces, and drag forces. To support real-
time interaction, n-body force calculations use the Barnes-
Hut algorithm [2] to compute the otherwise quadratic 
calculation in log-linear time. The force simulation supports 
various numerical integration schemes, with trade-offs in 
efficiency and accuracy, to update velocity and position 
values. The provided modules abstract the mathematical 
details of these techniques (e.g., 4th Order Runge-Kutta) from 
toolkit users. Users can also write custom force functions and 
add them to the simulator. 

Interactive Controls. Inspired by the Interactor paradigm [36], 
prefuse includes parameterizable ControlListener instances 
for common interactions. Provided controls include drag 
controls for repositioning items (or groups of items), focus 
controls for updating focus and highlight settings in response 
to mouse actions, and navigation controls for panning and 
zooming, including both manual controls and speed-
dependent automatic zooming [25]. 

Color Maps. To aid visualization, prefuse includes color 
maps for assigning colors to data elements. These maps can 
be configured directly, built using provided color schemes 
(e.g., grayscale and color gradients, hue sampling), or 
automatically generated by analyzing attribute values. 

Integrated Search. To simplify the addition of search to 
prefuse visualizations, the toolkit includes a FocusSet 
implementation to support efficient keyword search of large 
data sets. This component builds a trie (prefix tree) of 
requested data attributes, enabling searches that run in time 
proportional to the size of the query string. Search results 
matching a given query are then available for visualization as 
a FocusSet in the ItemRegistry’s FocusManager. 

Event Logging. prefuse includes an event logger for 
monitoring and recording events. This includes both user 
interface events (mouse movement, focus selection) and 
internal system events (addition and deletion of items from 
the registry). Although useful for debugging and performance 
monitoring, the primary motivation for this feature is to assist 
user studies, providing a unified framework for evaluating 
visualizations. Recorded logs can be used to review or replay 
a session. We have even synchronized the event logger with 
the output of an eye-tracker, enabling us to playback sessions 
annotated with subjects’ fixation points. 



WRITING APPLICATIONS WITH PREFUSE 
In this section we demonstrate how prefuse can be used to 
craft and extend an interactive visualization by chaining 
together components, creating extensible applications while 
minimizing the need for tedious coding or mathematics. 

Code Sample 1 presents 24 lines of code comprising a 
complete prefuse application for exploring graphs using 
animated radial layout (as in Figure 1(a) and [48]). The 
application first loads a graph data set from an XML file and 
creates a new ItemRegistry to house a visualization of that 
data. Next, individual Renderers for node and edge items are 
created and a default RendererFactory is created to assign 
these renderers to the appropriate items.  

Two ActionLists are used to specify the visualization. The 
first filters the graph data into a tree structure, applies a radial 
tree layout, and then assigns colors to the nodes. The 
argument to the TreeFilter specifies that the current focus 
node should be used as the root of the filtered tree. The 
default ColorFunction used provides custom colors for 
focused or highlighted items. The second ActionList specifies 
an animated transition for when the focus of the visualization 
changes. It is parameterized to run for 1.5 seconds, 
interpolating node positions in polar coordinates and 
interpolating color values. This list is set to run whenever the 
previous layout ActionList completes. 

A Display is then created to present the visualization. Two 
interactive controls are added: a DragControl enabling users 
to reposition nodes, and a FocusControl enabling users to 
select a new focus by clicking on a node, initiating a 
recalculation of the layout and an animated transition. 
Finally, the Display is added to an enclosing frame, and the 
layout ActionList is run. 

The prefuse architecture supports the addition of 
customizations and extensions by introducing new Actions, 
Renderers, or Controls. For example, if the underlying data 
set consists of a very large graph, the TreeFilter can be 
replaced with a WindowedTreeFilter to limit the visualization 
to a specified degree of separation (e.g., 3 hops out from the 
focus). Code Samples 2 through 4 further exemplify the 
space of possible customizations. 

Code Sample 2 illustrates how to use a force simulator to 
cause nodes to repel each other, enhancing the layout by 
adding jitter to improve readability. The force simulation 
animates for 1 second after the layout transition completes. 

Code Sample 3 shows how to add an overview display to the 
visualization (e.g., see Figure 1b) and enable panning and 
zooming. Panning is performed by holding down the left 
mouse button on the background and dragging, zooming is 
performed similarly using the right mouse button. 

Finally, Code Sample 4 demonstrates the addition of fisheye 
distortion to the visualization (e.g., Figure 1f). An ActionList 
containing a Distortion action is created and invoked by an 
AnchorUpdateControl control that monitors mouse movement 
to move the focus (or “anchor”) of the distortion.  

Code Sample 1: Radial Graph Explorer 
 

Code Sample 2: Adding Force-Based “Jitter” 
 

ForceSimulator fsim = new ForceSimulator(); 
fsim.addForce(new NBodyForce(-0.1f, 15f, 0.9f)); 
fsim.addForce(new DragForce()); 
             
ActionList forces = new ActionList(registry, 1000); 
forces.add(new ForceDirectedLayout(fsim, true)); 
forces.add(new RepaintAction()); 
forces.alwaysRunAfter(animate); 

 

// create graph and registry 
Graph g = new XMLGraphReader().loadGraph(datafile); 
ItemRegistry registry = new ItemRegistry(g); 
             
// intialize renderers 
Renderer nodeR = new TextItemRenderer(); 
Renderer edgeR = new DefaultEdgeRenderer(); 
registry.setRendererFactory( 
  new DefaultRendererFactory(nodeR, edgeR)); 
             
// initialize action lists 
ActionList layout = new ActionList(registry); 
layout.add(new TreeFilter(true)); 
layout.add(new RadialTreeLayout()); 
layout.add(new ColorFunction()); 
             
ActionList animate = new ActionList(registry,1500); 
animate.setPacingFunction(new SlowInSlowOutPacer()); 
animate.add(new PolarLocationAnimator()); 
animate.add(new ColorAnimator()); 
animate.add(new RepaintAction()); 
animate.alwaysRunAfter(layout); 
             
// initialize display 
Display disp = new Display(registry); 
disp.setSize(500,500); 
disp.addControlListener(new DragControl()); 
disp.addControlListener(new FocusControl(layout)); 
 
// initialize enclosing window frame 
JFrame frame = new JFrame("prefuse example"); 
frame.getContentPane().add(disp); 
frame.pack(); frame.setVisible(true); 
       
layout.runNow(); 

 

Code Sample 3: Adding an Overview, Panning, and Zooming 
 

Display overview = new Display(registry); 
overview.setBorder( 
  BorderFactory.createLineBorder(Color.BLACK, 1)); 
overview.setSize(50,50); 
overview.zoom(new Point2D.Float(0,0),0.1); 
display.add(overview); 
display.addControlListener(new PanControl()); 
display.addControlListener(new ZoomControl()); 

Code Sample 4: Adding Fisheye Distortion 
 

Distortion feye = new FisheyeDistortion(); 
ActionList distort = new ActionList(registry); 
distort.add(feye); 
distort.add(new RepaintAction());  
 
AnchorUpdateControl auc =  
  new AnchorUpdateControl(feye,distort); 
display.addMouseListener(auc); 
display.addMouseMotionListener(auc); 



EVALUATION – APPLICATION COVERAGE 
Throughout the development of the toolkit, we both 
reimplemented existing visualizations and crafted novel 
designs to the test the expressiveness, effectiveness, and 
scalabilty of the toolkit. As shown in Figure 1, these 
existing visualizations include animated radial graphs [48], 
animated force-directed layout (similar to plumbdesign’s 
Visual Thesaurus [47]), the hyperbolic tree browser [30], 
“squarified” tree maps [10], range-slider controlled starfield 
displays [1], fisheye graphs and fisheye menus [6], and the 
Data Mountain [41] (not pictured). prefuse greatly 
simplified the implementation of these visualizations, in 
some cases turning what might have been a matter of days 
or weeks into a matter of minutes. For example, using 
prefuse it took only 2 hours to implement the Data 
Mountain and a mere 20 minutes to create Fisheye Menus. 
Video demonstrations and implementation details of these 
applications are available at http://prefuse.sourceforge.net. 
We now describe in greater detail our experiences using 
prefuse to build two novel visualizations. 

Degree-of-Interest Trees. We have used prefuse to create a 
novel hierarchy browser [22], an evolutionary step from Card 
and Nation’s original Degree-of-Interest Tree (DOITree) 
browser [13]. DOITrees are tree visualizations featuring 
multiple focus+context techniques, including the use of 
degree-of-interest (DOI) functions [18] to determine which 
regions of the tree are visible, and the use of aggregates to 
represent unexpanded subtrees and to group lower-interest 
siblings in the face of limited space resources. Figure 3 
shows a prefuse-built DOITree visualizing a web directory 
with over 600,000 nodes. Clicking a node in the visualization 
causes it to become a focus, initiating a recalculation of DOI 
values and layout followed by an animated transition. The 
visualization also supports multiple foci, selected through 
both manual selection and keyword search.  

We implemented DOITrees using four ActionLists, all of 
which are sequentially scheduled in response to changes of 

focus node. The first list performs filtering, computes layout, 
and assigns initial colors. The second ActionList interpolates 
positions and colors to provide animated transitions. The 
third and fourth lists assign and then animate highlighting 
changes designed to make newly visible nodes easier to 
track. Additionally, an ActionSwitch (similar to a multiplexer) 
is used in the first list to select from one of three filters: a 
standard fisheye calculation [18], a custom filter showing 
only focus nodes (e.g., search results) and their ancestors, and 
another filter showing only focus nodes and their least 
common ancestors. Each filter provides progressively more 
semantically “zoomed-out” views of the data, facilitating 
exploration of different foci quite far apart in the tree [22]. 

As we developed the DOITree browser, the toolkit enabled 
us to add animated behaviors (initial highlighting and fade-
out for tracking newly visible items), design and incorporate 
a new layout algorithm [22], provide integrated handling of 
search results, and customize item appearances to specific 
application domains by crafting custom renderers. This 
application also demonstrates the toolkit’s scalability, 
maintaining real-time interaction with data sets containing 
nearly a million items. 

Vizster. Vizster [21] is a prefuse-built visualization of online 
social network services such as Friendster and Orkut (see 
Figure 4). It provides an ego-centric view of a person’s social 
network, presented using a force-directed layout. We are 
currently using Vizster to visualize a 1.5 million person crawl 
of the popular Friendster service. Each node displays a 
person’s name and image. Clicking a node causes a 
corresponding membership profile, containing information 
such as interests and relationship status, to appear in the 
panel on the right. Double-clicking a node makes the 
corresponding person the new center of the ego-centric 
network. The persons’ friends are loaded from a backing 
database and displayed while the display automatically pans 
to center on the new focus.  Manual panning and zooming 
are also supported; semantic zooming is used to switch to 

 

 
Figure 3. Degree-of-Interest Tree visualizing a 600,000 node web directory. 



higher resolution images of people when zoomed in. Typing 
in the search box immediately causes both matching nodes in 
the visualization and matching text in the profile to highlight. 

In addition to the browsing mode described above, Vizster 
supports a comparison mode (see Figure 5), accessed by 
clicking the radio button next to the desired attribute in the 
profile panel. In response, node appearances simplify to 
using color to display the desired attribute of the data, such as 
age, gender, or relationship status. Alternative color maps can 
be used by selecting them from the application menu. 

Underlying Vizster is a rather straightforward application of 
prefuse’s built-in components, such as fisheye graph 
filtering, force-directed layout, image loading and rendering, 
panning, zooming, integrated search, and color maps. The 
application uses one primary ActionList, infinitely re-running 
the force simulation while also setting the node color values. 
An ActionSwitch is used to select the appropriate 
ColorFunction based on the state of the application. 
Furthermore, a custom RenderingFactory is used, overseeing 
semantic zooming and doling out image renders in browsing 
mode and text-only renderers in comparison mode. While the 
application consists of a total of 1541 lines of code, only 469 
lines, or less than one-third, deal with specifying the 
visualization. The majority of the code deals with 
constructing traditional user interface components such as a 
login dialog and the profile panel. Using prefuse, we were 
able to construct the entire application in under a week.  

Summary 
The applications above showcase prefuse’s support for 
component reuse and extensibility, using provided modules 
(e.g., filters, layouts, renderers, interactive controls) across 
visualizations, while making it easy for both ourselves and 
others to introduce customized components. We also found 
that prefuse's highly-customizable rendering and animation 
support greatly accelerated implementation times and the 
exploration of various design ideas. Finally, the applications 
demonstrate that toolkit support did not unduly sacrifice 
performance, as applications maintained real-time interaction 
and animation rates with thousands of on-screen items and 
over a million data elements. 

EVALUATION - QUALITATIVE USABILITY STUDY 
While confident in the toolkit’s expressiveness, we wanted to 
better understand the learnability and usability of prefuse’s 
application programming interface (API) for other 
programmers. In particular, abstractions such as filtering and 
action lists might seem foreign to some programmers, 
constituting the threshold for toolkit use [37]. To investigate 
these concerns, we adopted the evaluation method of [28] 
and conducted a usability study of the prefuse API, observing 
8 programmers using the toolkit to build applications and 
then interviewing them about their experiences. 

The 8 participants were of varying background and expertise: 
4 computer science students (2 undergrads, 2 grads), 3 
professional programmers and/or user interface designers, 

and 1 information visualization expert. All were screened for 
familiarity with Java, the Swing UI toolkit, and the Eclipse 
integrated development environment. 

Participants were first given a brief tutorial lasting about 20 
minutes, including a code walkthrough of some sample 
applications. Subjects were then given a social network data 
file and asked to perform three programming tasks. The first 
was to create a static (non-animated) visualization of the data 
set using a random layout. The second task asked subjects to 
refine their visualization by applying a layout technique of 
their choice and using color to convey information about one 
or more data attributes. Finally, subjects were asked to add 
interactivity and animation, supporting a change of focus or 
other means of exploring the data. Tasks were performed on 
a Windows PC pre-loaded with the Eclipse IDE and prefuse 
source code, examples, and API documentation. Subjects 
were encouraged to “think-aloud” and were given up to an 
hour to complete the tasks. The tasks were videotaped and 
subject’s code samples were saved for later analysis. The 

 
   Figure 5. Vizster in comparison mode, using color to       

display the genders of visualized friends. 

 

 
Figure 4. Vizster in browsing mode, showing an ego-centric 

network of friendship relations. The panel on the right displays 
profile data for a selected person. 

 



tasks were followed by a short, open-ended interview in 
which subjects were asked about their experiences and their 
understanding of various toolkit abstractions. Interviews 
typically lasted 15-20 minutes and were audio recorded. 

Results 
Every subject successfully built a working visualization, and 
7 of the 8 subjects completed every task. Subjects did not 
necessarily complete tasks in the order presented (they were 
told this was fine) and half encountered trouble at some point 
in the study. The most common difficulty was structuring 
dataflow appropriately, making sure that filtered structures 
worked with downstream components such as layout 
algorithms. For example, four subjects wanted to apply a 
radial layout in their design, but ran into troubles when they 
used a general graph filter and the radial layout algorithm, 
expecting a tree, threw an exception. In response to these and 
similar issues, we subsequently redesigned the filtering 
system to better align with user’s expectations. For example, 
TreeFilters now automatically overlay a tree structure on 
filtered items when the source data is a general graph. 

The study also proved useful for unearthing naming issues. 
Most notably, VisualItems had originally been called 
GraphItems, an obvious (in hindsight) blunder that fueled 
confusion as to which data was abstract and which was visual 
content. ActionLists were initially called ActionPipelines, but 
were renamed to avoid association with the streaming nature 
of traditional pipeline architectures. 

Participant reaction to the toolkit, even from those who had 
difficulty, was encouraging. Many appreciated the toolkit 
design, saying “I’m surprised I needed as little code as I did!” 
and “[It’s] shockingly easy to use.” Four of the subjects 
wanted to use prefuse in their own work, and have 
downloaded the toolkit. One subject, who had been searching 
for tools to build visualizations of software execution, stated 
“This is the first thing I have found that can do what I want.” 

In addition to the findings directly related to prefuse, a 
couple of usage patterns emerged that are relevant to the 
study of software toolkits in general. One result was the 
rather minimal usage of the provided API documentation. 
Only one participant referred to documentation early on 
(exclaiming “I’m a javadoc fan!”); all others worked on tasks 
for at least 30 minutes before opening the documentation. 
When asked about this behavior in the post-study interview, 
subjects offered a number of explanations. Many said that 
they preferred to work directly with the code and explore 
problems as they arose, resorting to documentation only 
when a problem offers continued difficulty. One subject 
intimated that he preferred to stay within the Eclipse 
environment, as he felt switching between different 
applications (the documentation is read in a web browser) 
would slow him down.  

Furthermore, all eight subjects at least initially used a “cut 
and paste” method of application building, reusing existing 
sample code while performing tasks. Many subjects 

commented negatively on this as they did it, saying it was 
“bad” or “embarrassing” (one subject even asked for 
permission!). When asked about this, subjects were about 
evenly split in describing their reasons for this perceived 
“shame.” One camp maintained that they had been taught 
(largely in school) that “blindly” copying code was bad 
software engineering practice, for reasons too numerous to 
list here. Others felt that by copying and pasting they were 
not learning the toolkit deeply enough, and thus somehow not 
participating fully in the study. Despite this unease, all 
subjects disclosed in the post-task interviews that this was 
their typical approach to learning unfamiliar APIs. All 
subjects expressed the belief that sample code was the best 
way to learn new programming environments, making it 
clear that a toolkit’s “user interface” is not just an API, but 
the associated materials (code samples, documentation) as 
well, all of which should be the subject of design. 

Summary 
Through the evaluation process, the toolkit has made great 
strides. Both the application building process and user study 
have validated the goals of our toolkit while revealing needed 
functionality and suboptimal design decisions. The filtering 
abstraction, while setting the learning curve for the system, 
was understood by user study participants and has enabled an 
array of scalable visualizations. Using prefuse, study subjects 
built useful visualizations in under an hour, and toolkit users 
expressed an appreciation of the accompanying extensibility.  

We have found that iterative design, a proven method for 
developing user interfaces, has also proven a valuable design 
method for software toolkits. Since the study, an alpha 
release of prefuse has been downloaded over 1300 times and 
is being used in research projects, course assignments, and 
commercial products. We are following this usage in a 
longitudinal study of toolkit use, including a recent survey of 
20 programmers. This has unearthed additional requirements, 
from bug fixes to the need for improved documentation. 
Overall, reaction to prefuse has been overwhelmingly 
positive, enabling programmers of varying skill levels to 
create new visualizations of their own. 

CONCLUSION 
In this paper we have introduced prefuse, a user interface 
toolkit for crafting interactive visualizations of structured and 
unstructured data. prefuse supports the design of 2D 
visualizations of any data consisting of discrete data entities, 
such as graphs, trees, scatter plots, collections, and timelines. 
prefuse implements existing theoretical models of 
information visualization to provide a flexible framework for 
simplifying application design and enabling reuse and 
composition of visualization and interaction techniques. In 
particular, prefuse contributes scalable abstractions for 
filtering abstract data into visual content and using lists of 
composable actions to manipulate data in aggregate. 

Applications built with the toolkit demonstrate the flexibility 
and performance of the prefuse architecture. Both a user 



study and real-world usage has shown that programmers can 
use the toolkit to quickly build and tailor their own 
interactive visualizations. 

prefuse is part of a larger move to systematize information 
visualization research and bring more interactivity into data 
analysis and exploration. In future work, we plan to introduce 
more powerful operations for manipulating source data, 
provide additional components, and potentially develop a 
visual environment for application authoring. Most 
importantly, both we and others are now using the toolkit to 
build and evaluate new interactive visualizations for a variety 
of application domains. 

prefuse is open-source software. The toolkit, source code, 
and both interactive and video demonstrations are available 
at http://prefuse.sourceforge.net. 
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