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ABSTRACT 
Cartographers have long used flow maps to show the movement 

of objects from one location to another, such as the number of 
people in a migration, the amount of goods being traded, or the 
number of packets in a network. The advantage of flow maps is 
that they reduce visual clutter by merging edges. Most flow maps 
are drawn by hand and there are few computer algorithms 
available. We present a method for generating flow maps using 
hierarchical clustering given a set of nodes, positions, and flow 
data between the nodes. Our techniques are inspired by graph 
layout algorithms that minimize edge crossings and distort node 
positions while maintaining their relative position to one another. 
We demonstrate our technique by producing flow maps for 
network traffic, census data, and trade data. 
 
CR Categories and Subject Descriptors: I.3.3 [Computer 
Graphics]: Picture/Image Generation – Viewing Algorithms 
Additional Keywords: flow maps, GIS, hierarchical clustering 

1 INTRODUCTION 
Visualizing network flow and topology is challenging because 

displaying a large number of connections with lines results in 
visual clutter. SeeNet [3] let users adjust the visualization 
parameters of the map to manually reduce clutter and provided 
alternative designs to link maps. Node maps eliminated links and 
displayed connection data as node size. Matrix displays removed 
the geographic layout and encoded data by color. Other work tried 
to minimize clutter by using an extra dimension. SeeNet 3D [4;5] 
and work by Munzner [14] on Mbone visualization, drew links as 
variable-height arcs over a 2D map, where the height was encoded 
as the traffic volume. Unfortunately, these techniques still produce 
cluttered maps when encoding geographic detail, connectivity, 
and traffic volume on one map.  

 Cartographers have solved this problem with flow maps, which 
illustrate the movement of objects among locations. A flow map 

shows the spatial distribution of univariate geographic phenomena 
[17]. Lines of varying width which represent the number of 
objects being transferred are overlaid on the map. Visual clutter is 
reduced by merging edges that share destinations. The first flow 
maps illustrated rail ridership in Ireland and since then, 
cartographers have used flow maps to depict migrations, trade, 
and any data set with a from-to relationship [6].   

Our goal is to produce flow maps to visualize networks and 
other kinds of flow data. A well-drawn flow map allows a user to 
see the differences in magnitude among the flows with a 
minimum of clutter. Figure 1a is a hand drawn map by Minard 
illustrating the export of wine from France. Figure 1b shows a 
computer generated flow map by Tobler [18; 19], which is still 
cluttered because it does not take advantage of the techniques of 
hand-drawn maps. 

Our contribution is a technique that automatically generates 
flow maps. Figure 1c illustrates a flow map generated 
automatically by our system. Our approach uses hierarchical 
clustering to create a flow tree that connects a source (the root) to 
a set of destinations (the leaves). Our algorithm attempts to 
minimize edge crossings and supports the layering of single-
source flow maps to create multiple-source flow maps. We do this 
by preserving branching substructure across flow maps with 
different roots that share a common set of nodes. We have 
produced flow maps for trade data, network traffic, and migration 
data.1 

2 SYSTEM DESIGN 
Our analysis of good, hand-drawn flow maps reveals three 

common characteristics: intelligent distortion of positions, 
merging of edges that share destinations, and intelligent edge 
routing. Our technique attempts to produce flow maps with the 
same characteristics as these hand-drawn exemplars. Minard’s 
map of wine exports (Figure 1a) illustrates these characteristics. 
The Strait of Gibraltar has been widened and the UK has been 
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Figure 1. Flow Maps. (a) Minard’s 1864 flow map of wine exports from France [20] (b) Tobler’s computer generated flow map of migration 
from California from 1995 - 2000. [18; 19] (c) A flow map produced by our system that shows the same migration data. 



 
Figure 2. System Diagram 

shifted away from France to 
make room for the flow lines. 
However, these distortions 
preserve the relative positions 
of countries with respect to 
one another. Edges going to 
different regions of the world 
are merged and in this map, 
edge crossings are minimized.  

Other characteristics of 
flow maps described by 
cartographers concern their 
visual appearance [6]. Flow 
lines should be the dominant 
visual element and should be 
easily distinguishable from 
other map symbols. A linear 
mapping should be used to 

transform data values to line thickness. The map legend must be 
clear and provide key values for line widths. If edges cross, 
smaller lines should rest on top of larger lines.  To our knowledge, 
there are no published guidelines describing how to layout a hand-
drawn flow map, which is the focus of this paper. 

We achieve intelligent distortion of positions by using a layout 
adjustment algorithm that ensures that the separation distance 
between nodes is greater than the maximum thickness of the flow 
lines. This algorithm guarantees that nodes maintain their left-
right and up-down positions relative to one another [12].  

Merging edges that share destinations is done by using 
hierarchical clustering to find nodes that are close together. The 
tree formed by the hierarchical clustering is the basis for the 
branching structure of the flow map. The clustering is generated 
such that the root of the flow map is the root of the tree. We use a 
binary hierarchical clustering because it allows us to formulate the 
layout in a simple and recursive manner. 

 Our edge drawing and routing also uses hierarchical clustering. 
The recursive procedure to layout node positions uses the fact that 
all branches are binary. Clusters are modeled as rectangular 
bounding boxes enclosing their nodes. The edges check for 
intersections with the bounding boxes of their siblings. If an 

intersection exists, we place the node such that edges connected to 
that node are routed around the bounding box. 

To visualize more general networks using flow maps, we want 
to support maps with more than one root. We can create multiple-
source maps by layering single-source maps that have been 
generated by our algorithm. To make layering more effective, we 
preserve node position and branching structure across flow maps, 
which makes it easier to compare and contrast flow patterns 
across different layers. This is done by generating a primary 
hierarchical clustering that relies on the positions of the input set 
of nodes. The rooted clustering tree used to lay out each flow map 
is a modification of the primary hierarchical clustering tree. 

Figure 2 presents an overview of our system. The input to our 
system consists of a set of nodes, positions, and flow data among 
the nodes. There are layout phases and a rendering phase.  

Layout phases ensure nodes are adequately spaced, generate a 
topological layout tree, choose the positions of the branching 
points, and route edges around obstacles. The rendering phase 
converts the given spatial layout tree into a set of thick splines for 
each edge and generates a legend for the flow map. 

3 LAYOUT 
Sections 3.1 to 3.5 describe the steps of the algorithm for 

generating a single-source flow map. In 3.6 we describe the 
additional considerations that arise from having multiple layers in 
the system. 

3.1 Layout Adjustment 
The layout adjustment step enforces a minimum separation 

distance among the nodes in the horizontal and vertical directions 
and preserves their relative positions to one another. We specify 
the minimum separation distance to be the maximum width of a 
flow line in pixels. We use Misue et al.’s force scan algorithm 
[12] which runs in O(n2). We have observed that good flow maps 
contain a moderate number of nodes (less than 100), so the 
efficiency of the algorithm is not an issue. Nodes are sorted into 
two lists, one ordered by x-coordinate and the other ordered by y-
coordinate. The algorithm consists of a horizontal scan followed 
by a vertical scan.  

We also experimented with a force directed scheme from the 

Figure 3. Hierarchical Clustering.  A flow map tree is generated by clustering a set of nodes. (a) We show a spatial representation of the 
primary hierarchical clustering (PHC) and its equivalent tree. Rooted hierarchical clustering (RHC) modifies the PHC to produce a flow map for 
a particular root. The x’s on the bounding boxes indicate the clusters that are not reused. (b) The RHC for a flow map from C. The (A,B)  and 
the ((D,E),F) clusters are kept. (c) The RHC for a flow map from D. Only the (A,B) cluster is preserved. 



graph drawing literature [2]. The problem we encountered was 
that force directed methods often included randomness in the 
system to avoid local minima in layout. However, we were 
interested in generating flow maps with stable node positions for a 
given set of nodes. The force directed technique resulted in 
slightly different layouts each time, so we chose to use the 
algorithm of Misue et al. [12] which remains stable. Note that 
keeping node positions stable allows us to layer flow maps on top 
of one another. However, without this constraint, there might have 
been a better way to create a flow map by adjusting positions. 

3.2 Primary Hierarchical Clustering  
The primary hierarchical clustering captures information about 

the spatial distribution of the input nodes. We use an 
agglomerative hierarchical clustering [9] that creates a binary tree 
from the input set of nodes. The input nodes are at the leaves of 
the primary hierarchical clustering. The distance between two 
clusters is the Euclidean distance between the centers of their 
rectangular bounding boxes. Figure 3 gives an example of how a 
primary clustering is generated.  

3.3 Rooted Hierarchical Clustering 
We want to generate a flow map with a given node r at the root. 

The tree produced by the primary hierarchical clustering is not 
suitable because its root is a combination of clusters of input 
nodes. To generate a tree where node r is the root and connects to 
the other input nodes, we modify the tree produced by the primary 
clustering. For a given root node r, we accumulate nodes to be 
reclustered by following parent pointers from node r to the root of 
the primary clustering tree. We add clusters hanging off this path 
to our set to be reclustered, including the cluster with node r. 
Figure 3 demonstrates how rooted clustering modifies a primary 
clustering. 

Our theoretical analysis indicates that following these parent 
pointers takes O(lg m) time, and clustering the accumulated set 
takes O(lg m)2 time, where m is the total number of nodes in the 
system, including nodes generated by the primary clustering as 
well as the input nodes. We note that this is O(n) nodes, where n 
is the number of input nodes in the system. Without re-use of 
substructure from the primary clustering, our rooted clustering 
would take O(m2). Currently the system implements the simplified 
version of our algorithm that takes O(m2).  

Rooted hierarchical clustering merges nodes differently from 
standard hierarchical clustering. Suppose the algorithm wants to 
merge clusters C1 and C2 because they are the closest in the 

system. Before it does so, it checks to see if C1 or C2 contains the 
root node r. Suppose C1 contains r. C2 is marked for attempting 
to merge with the root. The algorithm looks for another cluster C3 
to merge with C2. C3 must be unmarked and distance(C2,C3) ≤ 
distance(C2, root). If we only marked the C2 cluster without 
looking for C3, we might miss an opportunity to merge clusters on 
the same side of the root. The distance check ensures that we do 
not merge nodes on opposite sides of the root. The algorithm 
terminates if it cannot find an unmarked cluster C3.  

When the reclustering terminates due to the algorithm being 
unable to find any unmarked clusters, the remaining clusters in the 
system become the children of the source cluster. Note that all the 
nodes except for the root of a rooted clustering have two children. 
Since reclustering may terminate with more than two marked 
clusters, a rooted hierarchical clustering is not always a binary 
tree, in contrast to a primary clustering, which is always binary.  

The last step in the rooted clustering computes the weights of 
the clusters. Given the flow data among the nodes, we know how 
much data flows from the root r to our destination nodes. This is 
recorded as the weight of a node. We compute the weight for each 
cluster, bottom-up, in O(m) time. 

3.4 Spatial Layout 
The next step is to recursively lay out the tree of flows rooted at 

the source. Each node creates a branching structure from the 
parent to its two children. The challenge is to minimize edge 
crossings. We assume that the bounding boxes of the children do 
not overlap. If the layout of the subtrees corresponding to each 
child is contained within its bounding box, then the branch 
between the parent and the child will not intersect the tree 
corresponding to the child. 

We create a branching node between the root and each of its 
immediate child clusters. We choose the position of that node by 
drawing a line l from the root’s position a, to the center of the 
cluster c. The closest intersection of l with c’s bounding box is 
called b. The position of the branching node is the average 
position of a and b, or (a+b)/2. We recurse on the grand children 
of the root nodes.   

Figure 4 illustrates the placement of a binary branching point 
for the three cases: a split between two leaf nodes, one leaf node 

Figure 4. Spatial Layout. The binary structure of the rooted 
clustering allows to us generate the layout recursively. Branching 
points are always placed on the line between the start node and 
the destination that has more weight (or flow).  

Figure 5. Edge Routing. Spatial layout may cause an intersection 
by placing b3 in a way that intersects c1. The algorithm finds the 
intersection of b1-b3 with c1, and adds a new node and adjusts the 
position of b3 to avoid c1 if necessary.   



 
Figure 6. Outgoing migration map from Colorado  from 1995-2000, 
generated by our algorithm without layout adjustment or edge 
routing. Note how the spatial structure imposed by our hierarchical 
clustering still merges edges in a way that produces a clean map 
despite the lack of edge routing. 

and a cluster, or two clusters. Branching nodes n are placed 
halfway between the position of the start node, a, and another 
point b. For two leaf clusters, b is the location of the heavier node. 
For the other cases, let l be a line between a and the center of the 
heavier cluster. b is the closest point to a, on the line l, that 
intersects the bounding box of either child cluster. In both cases 
the position of the branching node n is set to be (a+b)/2.  

We always add an edge from our starting node to the branching 
node n, and an edge from n to the leaf nodes. We always recurse 
on clusters.  Note the branching point may be placed where an 
outgoing edge intersects the bounding box of one of its children.  
We describe how we avoid these intersections in the next section. 

3.5 Edge Routing 
We route edges around the bounding boxes within the same 

hierarchical cluster. A consequence of this is that the edges from 
the root node to its immediate children are not routed, because 
they are not in a cluster with one another. We will discuss this 
issue in more detail in Section 5. We illustrate how we route 
edges around sibling clusters for the case of two clusters in Figure 
5. Step 1 illustrates how for each branching point b1, we check if 
the edge b1-b2 or the edge b1-b3 intersects its sibling’s bounding 
box. We see that b1-b3 intersects the bounding box of cluster c1, 
so we know that c1 occludes c2. Step 2 shows how we find the 
closest corner on the bounding box c1 to the line b1-b3 and create 
a new node at that corner to route the edge around the bounding 
box. In Step 3, we check the line from the new node to b3 and see 
if it intersects c1. If it does, we move the point b3 to just outside 
the corner of the bounding box of c1.  

Figure 5 also illustrates how we decide which corner to position 
nodes. If an edge that intersects a bounding box, it splits it into 
two parts. We compute the areas of each part of the box that was 
split by the edge. We choose the corner on the side of the edge 
with less area. 

3.6 Multiple-Layer Issues 
Previous sections described how the layout works for a single 

layer, which is created to depict data from an initial query. Here 
we describe the modifications to the algorithm when users 
generate further queries to get a combined visualization. 

Each additional query might introduce new nodes that did not 
exist in the previous query. As a result, the layout adjustment step 
must be re-run for each new query, which may take O(m2) where 
m is the total number of unique nodes accumulated over all the 
queries. We reset the positions of all the nodes to their initial 

locations, and then run the layout adjustment step as described in 
3.1. When we get new nodes, we also run the primary hierarchical 
clustering step again, which also takes O(m2). 

The hierarchical clustering steps in our system must be 
modified to account for the fact that not every cluster belongs to 
every layer. Every cluster has a list of the layers with which it is 
associated. Clusters also store a mapping from layers to a list of 
their subclusters which appear in that layer. Our current 
implementation of rooted clustering runs in O(m2). This is because 
we do not propagate the layer information up the tree when 
constructing the primary hierarchical clustering, so we have to 
inspect the subtree to find which subclusters appear in which 
layer. However, by storing subclusters’ information at each level, 
this would improve the running time of rooted clustering O(lg m) 
to accumulate nodes and O(lg m)2 to recluster the set.  

We note that the edge routing is done on a per-layer basis, 
which will cause many edge crossings if too many maps are 
layered on top of one another. 

4 RENDERING 
To make the flow map visually appealing,  each edge is 

rendered as a catmull-rom spline which interpolates between the 
nodes of the spatial layout tree that we produced. The splines are 
rendered such that they have width proportional to the weight of 
the edge. We can set the widths of the splines to lie between a 
minimum and a maximum display width. We map the data to this 
interval using a linear or a logarithmic function. We adjust the 
splines so that edge widths add up visually.  For each binary 
branch, we shift the starting point of the child splines by a 
distance proportional to the width of the child, in a direction 
perpendicular to the vector that represents the edge. 

We generate a legend for the map by running k-means 
clustering [9] on all the edge widths that appear in the map. We 
chose to generate 7 categories for the legend. Since we do not 
enforce that a bin in our k-means should not contain 0, some 
legends generated by our system may have less than 7 categories. 
The location of the legend on the map is set manually. A unique 
color is set for each layer so to distinguish them better. 

5 RESULTS AND DISCUSSION  
We used several data sets to test our method. The US Census 

data for 1995-2000 [21] records all of the county to county 
migrations. Network traffic data was recorded from our lab’s 
router over a period of several months. The ecological footprint 
data is courtesy of the Footprint Network [13]. All the node 
positions were specified in latitude and longitude, and converted 
to screen space via a Mercator projection. The maps produced by 

Figure 7. Outgoing migration map from Colorado for 1995-2000 
generated using edge routing but no layout adjustment. 



our system were produced in a few seconds of time on a 1.4GHz 
laptop. The system itself is written in Java using the prefuse 
visualization toolkit developed by Heer [8]. 

Our technique produces aesthetically pleasing flow maps for a 
variety of data sets. However, there are still cases where the flow 
maps do not look as good as expected. To understand these failure 
cases, we analyze our technique in terms of the three 
characteristics of the good flow maps.  

Intelligent Distortion. The force scan algorithm [12] used for 
layout adjustment separates the nodes and guarantees that we are 
not changing the relative positions of the nodes to one another. 
The problem with this method can be seen by comparing Figure 
1c with Figure 6. While Figure 6 is clearly recognizable as the 
outline of the United States, Figure 1c has been vertically 
distorted so that the states on the East Coast are spread apart. This 
stretches out the West Coast too much.   

Merging of edges that share destinations. Our simple version 
of hierarchical clustering is able to find spatial clusters in the data 
sets we use. The biggest drawback to our algorithm in this regard 
is that all splits are binary. If there are too many destination nodes 
in a small area, forcing binary splits introduces too many extra 
routing nodes and leads to clutter. In addition, with too many 
nodes, continuity constraints for splines cause them to loop.  

Intelligent edge routing. Our heuristic works well for simpler 
cases (Figure 7) and sometimes does not work well for larger 
cases (Figure 8). One problem is that we do not perform any 
routing on the edges leaving the root. Branches in these separate 
binary trees don’t know about each other and may overlap. In 
Figure 8, the reason why there are so many edge crossings is that 
our method assumes bounding boxes created by our spatial 
clustering are disjoint. However, our clustering does not always 
produce disjoint boxes, so we cannot always apply our heuristic. 

Layering and branching structure. We have found that the 
method for sharing substructure across flow maps that share a 
common set of nodes works quite well. Figure 9 has an example 
where two flow maps layered together share branching structure 
to several nodes.   

Linear or logarithmic display widths. In our initial maps we 
used logarithms to map our data to a display width, because we 
were working with network data where there were many orders of 
magnitude in the data that we were plotting. However, for data 
sets not dominated by a few high magnitude values, we find that 
linear mappings draw the eye more. All the maps we 
demonstrated in this paper use linear mappings.  

6 RELATED WORK 
A survey of American flow mapping history and techniques is 

described in [15]. Flow map design is discussed in various 
geography textbooks [6; 17]. Guidelines are given on legend 
design and the use of a visual hierarchy to emphasize flow lines 
over region boundaries. Ruggles and Armstrong [16] discuss a 
framework for the cartographic visualization of networks. More 
generally, map design is discussed in [11]. 

An alternative method of layout adjustment is described by 
Lyons [10], who improves the distribution of nodes in a graph and 
uses measures for graph similarity and distribution to decide if too 
much distortion has occurred.  Since this method tends to more 
evenly distribute the nodes, it tends to blur out geographic 
features, which is not as useful for flow maps. 

Our edge routing technique is related to the ones found in the 
graph drawing literature. Dobkin et al. [7] describes how to route 
individual edges through a set of obstacles represented by 
polygons. Unfortunately, they leave the question how to do this 
for multiple edges open.  

Our work is related to Agrawala and Stolte [1], who studied 
hand-drawn route maps to understand the principles that made 
them effective. They made use of intelligent distortion to produce 
computer generated route maps. 

Figure 8. Imports to China. A part of a flow map showing the top 
200 countries from which China (bottom right) receives imports. 
The thick line curving around the top are the imports from the USA 
(not shown), which without edge routing would have gone straight 
through the middle of the image. Edge crossings still occur in some 
parts of the map, illustrating cases where our routing does not 
work. For more information see the discussion in Section 5. 

Figure 9. Branching Structure. A close-up of top 15 imports to 
Spain and France. Notice the branching structure is shared across 
different nodes, for example Spain, and France branch to the 
Netherlands, Germany and the UK in the same way.  



7 CONCLUSION AND FUTURE WORK 
There are many areas of future work suggested by this project. 

Global enforcement of horizontal and vertical ordering seems too 
strict for flow maps. A better layout adjustment algorithm might 
only enforce horizontal and vertical ordering within some 2D 
local window of each node, so that things may be globally 
distorted but locally consistent. 

Although using binary clustering makes our spatial layout step 
simpler, having non-binary splits could eliminate some clutter and 
some loopy edges. Also, instead of our heuristic-based method for 
edge routing, it may be possible to use simulated annealing to 
adjust the edge positions.  

We are also interested in the layout and display of data that 
does not explicitly have a location. Although all of our work has 
been on data sets with geographic locations, it may be interesting 
to generate flow maps for more abstract sets of objects that have 
no predefined positions but that can be grouped in other ways. 

Now that we have an algorithm to generate flow maps 
programmatically, we are interested in developing techniques to 

interact with the data. We are interested in working with people 
who analyze flow data to see how they use an interactive  tool.  

In this paper, we have presented a method to automatically 
generate flow maps. We use distortion to ensure that our nodes are 
well spaced but still preserve their relative positions to one 
another. We merge edges based on their destinations using 
hierarchical clustering.  This allows flow maps with the same 
input nodes to share branching structures. Finally we use the 
spatial information given to us by the hierarchical clustering to do 
edge routing to avoid edge crossings. 
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Figure 11. An example of the top ASN (Autonomous Systems) that 
a computer from our lab communicated with in one day. The 
latitudes and longitudes for the ASNs were obtained by manually 
looking for the city or state in which the ASN was registered. 

 

Figure 10. California and New York migration. Another example 
of how layering can be used in our system. The map shows the top 
10 states that migrate to California and New York. Flow maps make 
it easy to spot an interesting spatial pattern, namely that New York 
tends to attract people from the East Coast, while California 
residents come from more geographic regions in the United States. 


