
Flow Map Layout

Doantam Phan1, Ling Xiao1, Ron Yeh1, Pat Hanrahan2, and Terry Winograd2

Stanford University

ABSTRACT
Cartographers have long used flow maps to show the movement

of objects from one location to another, such as the number of
people in a migration, the amount of goods being traded, or the
number of packets in a network. The advantage of flow maps is
that they reduce visual clutter by merging edges. Most flow maps
are drawn by hand and there are few computer algorithms
available. We present a method for generating flow maps using
hierarchical clustering given a set of nodes, positions, and flow
data between the nodes. Our techniques are inspired by graph
layout algorithms that minimize edge crossings and distort node
positions while maintaining their relative position to one another.
We demonstrate our technique by producing flow maps for
network traffic, census data, and trade data.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation – Viewing Algorithms
Additional Keywords: flow maps, GIS, hierarchical clustering

1 INTRODUCTION
Visualizing network flow and topology is challenging because

displaying a large number of connections with lines results in
visual clutter. SeeNet [3] let users adjust the visualization
parameters of the map to manually reduce clutter and provided
alternative designs to link maps. Node maps eliminated links and
displayed connection data as node size. Matrix displays removed
the geographic layout and encoded data by color. Other work tried
to minimize clutter by using an extra dimension. SeeNet 3D [4;5]
and work by Munzner [14] on Mbone visualization, drew links as
variable-height arcs over a 2D map, where the height was encoded
as the traffic volume. Unfortunately, these techniques still produce
cluttered maps when encoding geographic detail, connectivity,
and traffic volume on one map.

 Cartographers have solved this problem with flow maps, which
illustrate the movement of objects among locations. A flow map

shows the spatial distribution of univariate geographic phenomena
[17]. Lines of varying width which represent the number of
objects being transferred are overlaid on the map. Visual clutter is
reduced by merging edges that share destinations. The first flow
maps illustrated rail ridership in Ireland and since then,
cartographers have used flow maps to depict migrations, trade,
and any data set with a from-to relationship [6].

Our goal is to produce flow maps to visualize networks and
other kinds of flow data. A well-drawn flow map allows a user to
see the differences in magnitude among the flows with a
minimum of clutter. Figure 1a is a hand drawn map by Minard
illustrating the export of wine from France. Figure 1b shows a
computer generated flow map by Tobler [18; 19], which is still
cluttered because it does not take advantage of the techniques of
hand-drawn maps.

Our contribution is a technique that automatically generates
flow maps. Figure 1c illustrates a flow map generated
automatically by our system. Our approach uses hierarchical
clustering to create a flow tree that connects a source (the root) to
a set of destinations (the leaves). Our algorithm attempts to
minimize edge crossings and supports the layering of single-
source flow maps to create multiple-source flow maps. We do this
by preserving branching substructure across flow maps with
different roots that share a common set of nodes. We have
produced flow maps for trade data, network traffic, and migration
data.1

2 SYSTEM DESIGN
Our analysis of good, hand-drawn flow maps reveals three

common characteristics: intelligent distortion of positions,
merging of edges that share destinations, and intelligent edge
routing. Our technique attempts to produce flow maps with the
same characteristics as these hand-drawn exemplars. Minard’s
map of wine exports (Figure 1a) illustrates these characteristics.
The Strait of Gibraltar has been widened and the UK has been

1 dphan, lingxiao, ronyeh @ graphics.stanford.edu
2 hanrahan, winograd @ cs.stanford.edu

Figure 1. Flow Maps. (a) Minard’s 1864 flow map of wine exports from France [20] (b) Tobler’s computer generated flow map of migration
from California from 1995 - 2000. [18; 19] (c) A flow map produced by our system that shows the same migration data.

Figure 2. System Diagram

shifted away from France to
make room for the flow lines.
However, these distortions
preserve the relative positions
of countries with respect to
one another. Edges going to
different regions of the world
are merged and in this map,
edge crossings are minimized.

Other characteristics of
flow maps described by
cartographers concern their
visual appearance [6]. Flow
lines should be the dominant
visual element and should be
easily distinguishable from
other map symbols. A linear
mapping should be used to

transform data values to line thickness. The map legend must be
clear and provide key values for line widths. If edges cross,
smaller lines should rest on top of larger lines. To our knowledge,
there are no published guidelines describing how to layout a hand-
drawn flow map, which is the focus of this paper.

We achieve intelligent distortion of positions by using a layout
adjustment algorithm that ensures that the separation distance
between nodes is greater than the maximum thickness of the flow
lines. This algorithm guarantees that nodes maintain their left-
right and up-down positions relative to one another [12].

Merging edges that share destinations is done by using
hierarchical clustering to find nodes that are close together. The
tree formed by the hierarchical clustering is the basis for the
branching structure of the flow map. The clustering is generated
such that the root of the flow map is the root of the tree. We use a
binary hierarchical clustering because it allows us to formulate the
layout in a simple and recursive manner.

 Our edge drawing and routing also uses hierarchical clustering.
The recursive procedure to layout node positions uses the fact that
all branches are binary. Clusters are modeled as rectangular
bounding boxes enclosing their nodes. The edges check for
intersections with the bounding boxes of their siblings. If an

intersection exists, we place the node such that edges connected to
that node are routed around the bounding box.

To visualize more general networks using flow maps, we want
to support maps with more than one root. We can create multiple-
source maps by layering single-source maps that have been
generated by our algorithm. To make layering more effective, we
preserve node position and branching structure across flow maps,
which makes it easier to compare and contrast flow patterns
across different layers. This is done by generating a primary
hierarchical clustering that relies on the positions of the input set
of nodes. The rooted clustering tree used to lay out each flow map
is a modification of the primary hierarchical clustering tree.

Figure 2 presents an overview of our system. The input to our
system consists of a set of nodes, positions, and flow data among
the nodes. There are layout phases and a rendering phase.

Layout phases ensure nodes are adequately spaced, generate a
topological layout tree, choose the positions of the branching
points, and route edges around obstacles. The rendering phase
converts the given spatial layout tree into a set of thick splines for
each edge and generates a legend for the flow map.

3 LAYOUT
Sections 3.1 to 3.5 describe the steps of the algorithm for

generating a single-source flow map. In 3.6 we describe the
additional considerations that arise from having multiple layers in
the system.

3.1 Layout Adjustment
The layout adjustment step enforces a minimum separation

distance among the nodes in the horizontal and vertical directions
and preserves their relative positions to one another. We specify
the minimum separation distance to be the maximum width of a
flow line in pixels. We use Misue et al.’s force scan algorithm
[12] which runs in O(n2). We have observed that good flow maps
contain a moderate number of nodes (less than 100), so the
efficiency of the algorithm is not an issue. Nodes are sorted into
two lists, one ordered by x-coordinate and the other ordered by y-
coordinate. The algorithm consists of a horizontal scan followed
by a vertical scan.

We also experimented with a force directed scheme from the

Figure 3. Hierarchical Clustering. A flow map tree is generated by clustering a set of nodes. (a) We show a spatial representation of the
primary hierarchical clustering (PHC) and its equivalent tree. Rooted hierarchical clustering (RHC) modifies the PHC to produce a flow map for
a particular root. The x’s on the bounding boxes indicate the clusters that are not reused. (b) The RHC for a flow map from C. The (A,B) and
the ((D,E),F) clusters are kept. (c) The RHC for a flow map from D. Only the (A,B) cluster is preserved.

graph drawing literature [2]. The problem we encountered was
that force directed methods often included randomness in the
system to avoid local minima in layout. However, we were
interested in generating flow maps with stable node positions for a
given set of nodes. The force directed technique resulted in
slightly different layouts each time, so we chose to use the
algorithm of Misue et al. [12] which remains stable. Note that
keeping node positions stable allows us to layer flow maps on top
of one another. However, without this constraint, there might have
been a better way to create a flow map by adjusting positions.

3.2 Primary Hierarchical Clustering
The primary hierarchical clustering captures information about

the spatial distribution of the input nodes. We use an
agglomerative hierarchical clustering [9] that creates a binary tree
from the input set of nodes. The input nodes are at the leaves of
the primary hierarchical clustering. The distance between two
clusters is the Euclidean distance between the centers of their
rectangular bounding boxes. Figure 3 gives an example of how a
primary clustering is generated.

3.3 Rooted Hierarchical Clustering
We want to generate a flow map with a given node r at the root.

The tree produced by the primary hierarchical clustering is not
suitable because its root is a combination of clusters of input
nodes. To generate a tree where node r is the root and connects to
the other input nodes, we modify the tree produced by the primary
clustering. For a given root node r, we accumulate nodes to be
reclustered by following parent pointers from node r to the root of
the primary clustering tree. We add clusters hanging off this path
to our set to be reclustered, including the cluster with node r.
Figure 3 demonstrates how rooted clustering modifies a primary
clustering.

Our theoretical analysis indicates that following these parent
pointers takes O(lg m) time, and clustering the accumulated set
takes O(lg m)2 time, where m is the total number of nodes in the
system, including nodes generated by the primary clustering as
well as the input nodes. We note that this is O(n) nodes, where n
is the number of input nodes in the system. Without re-use of
substructure from the primary clustering, our rooted clustering
would take O(m2). Currently the system implements the simplified
version of our algorithm that takes O(m2).

Rooted hierarchical clustering merges nodes differently from
standard hierarchical clustering. Suppose the algorithm wants to
merge clusters C1 and C2 because they are the closest in the

system. Before it does so, it checks to see if C1 or C2 contains the
root node r. Suppose C1 contains r. C2 is marked for attempting
to merge with the root. The algorithm looks for another cluster C3
to merge with C2. C3 must be unmarked and distance(C2,C3) ≤
distance(C2, root). If we only marked the C2 cluster without
looking for C3, we might miss an opportunity to merge clusters on
the same side of the root. The distance check ensures that we do
not merge nodes on opposite sides of the root. The algorithm
terminates if it cannot find an unmarked cluster C3.

When the reclustering terminates due to the algorithm being
unable to find any unmarked clusters, the remaining clusters in the
system become the children of the source cluster. Note that all the
nodes except for the root of a rooted clustering have two children.
Since reclustering may terminate with more than two marked
clusters, a rooted hierarchical clustering is not always a binary
tree, in contrast to a primary clustering, which is always binary.

The last step in the rooted clustering computes the weights of
the clusters. Given the flow data among the nodes, we know how
much data flows from the root r to our destination nodes. This is
recorded as the weight of a node. We compute the weight for each
cluster, bottom-up, in O(m) time.

3.4 Spatial Layout
The next step is to recursively lay out the tree of flows rooted at

the source. Each node creates a branching structure from the
parent to its two children. The challenge is to minimize edge
crossings. We assume that the bounding boxes of the children do
not overlap. If the layout of the subtrees corresponding to each
child is contained within its bounding box, then the branch
between the parent and the child will not intersect the tree
corresponding to the child.

We create a branching node between the root and each of its
immediate child clusters. We choose the position of that node by
drawing a line l from the root’s position a, to the center of the
cluster c. The closest intersection of l with c’s bounding box is
called b. The position of the branching node is the average
position of a and b, or (a+b)/2. We recurse on the grand children
of the root nodes.

Figure 4 illustrates the placement of a binary branching point
for the three cases: a split between two leaf nodes, one leaf node

Figure 4. Spatial Layout. The binary structure of the rooted
clustering allows to us generate the layout recursively. Branching
points are always placed on the line between the start node and
the destination that has more weight (or flow).

Figure 5. Edge Routing. Spatial layout may cause an intersection
by placing b3 in a way that intersects c1. The algorithm finds the
intersection of b1-b3 with c1, and adds a new node and adjusts the
position of b3 to avoid c1 if necessary.

Figure 6. Outgoing migration map from Colorado from 1995-2000,
generated by our algorithm without layout adjustment or edge
routing. Note how the spatial structure imposed by our hierarchical
clustering still merges edges in a way that produces a clean map
despite the lack of edge routing.

and a cluster, or two clusters. Branching nodes n are placed
halfway between the position of the start node, a, and another
point b. For two leaf clusters, b is the location of the heavier node.
For the other cases, let l be a line between a and the center of the
heavier cluster. b is the closest point to a, on the line l, that
intersects the bounding box of either child cluster. In both cases
the position of the branching node n is set to be (a+b)/2.

We always add an edge from our starting node to the branching
node n, and an edge from n to the leaf nodes. We always recurse
on clusters. Note the branching point may be placed where an
outgoing edge intersects the bounding box of one of its children.
We describe how we avoid these intersections in the next section.

3.5 Edge Routing
We route edges around the bounding boxes within the same

hierarchical cluster. A consequence of this is that the edges from
the root node to its immediate children are not routed, because
they are not in a cluster with one another. We will discuss this
issue in more detail in Section 5. We illustrate how we route
edges around sibling clusters for the case of two clusters in Figure
5. Step 1 illustrates how for each branching point b1, we check if
the edge b1-b2 or the edge b1-b3 intersects its sibling’s bounding
box. We see that b1-b3 intersects the bounding box of cluster c1,
so we know that c1 occludes c2. Step 2 shows how we find the
closest corner on the bounding box c1 to the line b1-b3 and create
a new node at that corner to route the edge around the bounding
box. In Step 3, we check the line from the new node to b3 and see
if it intersects c1. If it does, we move the point b3 to just outside
the corner of the bounding box of c1.

Figure 5 also illustrates how we decide which corner to position
nodes. If an edge that intersects a bounding box, it splits it into
two parts. We compute the areas of each part of the box that was
split by the edge. We choose the corner on the side of the edge
with less area.

3.6 Multiple-Layer Issues
Previous sections described how the layout works for a single

layer, which is created to depict data from an initial query. Here
we describe the modifications to the algorithm when users
generate further queries to get a combined visualization.

Each additional query might introduce new nodes that did not
exist in the previous query. As a result, the layout adjustment step
must be re-run for each new query, which may take O(m2) where
m is the total number of unique nodes accumulated over all the
queries. We reset the positions of all the nodes to their initial

locations, and then run the layout adjustment step as described in
3.1. When we get new nodes, we also run the primary hierarchical
clustering step again, which also takes O(m2).

The hierarchical clustering steps in our system must be
modified to account for the fact that not every cluster belongs to
every layer. Every cluster has a list of the layers with which it is
associated. Clusters also store a mapping from layers to a list of
their subclusters which appear in that layer. Our current
implementation of rooted clustering runs in O(m2). This is because
we do not propagate the layer information up the tree when
constructing the primary hierarchical clustering, so we have to
inspect the subtree to find which subclusters appear in which
layer. However, by storing subclusters’ information at each level,
this would improve the running time of rooted clustering O(lg m)
to accumulate nodes and O(lg m)2 to recluster the set.

We note that the edge routing is done on a per-layer basis,
which will cause many edge crossings if too many maps are
layered on top of one another.

4 RENDERING
To make the flow map visually appealing, each edge is

rendered as a catmull-rom spline which interpolates between the
nodes of the spatial layout tree that we produced. The splines are
rendered such that they have width proportional to the weight of
the edge. We can set the widths of the splines to lie between a
minimum and a maximum display width. We map the data to this
interval using a linear or a logarithmic function. We adjust the
splines so that edge widths add up visually. For each binary
branch, we shift the starting point of the child splines by a
distance proportional to the width of the child, in a direction
perpendicular to the vector that represents the edge.

We generate a legend for the map by running k-means
clustering [9] on all the edge widths that appear in the map. We
chose to generate 7 categories for the legend. Since we do not
enforce that a bin in our k-means should not contain 0, some
legends generated by our system may have less than 7 categories.
The location of the legend on the map is set manually. A unique
color is set for each layer so to distinguish them better.

5 RESULTS AND DISCUSSION
We used several data sets to test our method. The US Census

data for 1995-2000 [21] records all of the county to county
migrations. Network traffic data was recorded from our lab’s
router over a period of several months. The ecological footprint
data is courtesy of the Footprint Network [13]. All the node
positions were specified in latitude and longitude, and converted
to screen space via a Mercator projection. The maps produced by

Figure 7. Outgoing migration map from Colorado for 1995-2000
generated using edge routing but no layout adjustment.

our system were produced in a few seconds of time on a 1.4GHz
laptop. The system itself is written in Java using the prefuse
visualization toolkit developed by Heer [8].

Our technique produces aesthetically pleasing flow maps for a
variety of data sets. However, there are still cases where the flow
maps do not look as good as expected. To understand these failure
cases, we analyze our technique in terms of the three
characteristics of the good flow maps.

Intelligent Distortion. The force scan algorithm [12] used for
layout adjustment separates the nodes and guarantees that we are
not changing the relative positions of the nodes to one another.
The problem with this method can be seen by comparing Figure
1c with Figure 6. While Figure 6 is clearly recognizable as the
outline of the United States, Figure 1c has been vertically
distorted so that the states on the East Coast are spread apart. This
stretches out the West Coast too much.

Merging of edges that share destinations. Our simple version
of hierarchical clustering is able to find spatial clusters in the data
sets we use. The biggest drawback to our algorithm in this regard
is that all splits are binary. If there are too many destination nodes
in a small area, forcing binary splits introduces too many extra
routing nodes and leads to clutter. In addition, with too many
nodes, continuity constraints for splines cause them to loop.

Intelligent edge routing. Our heuristic works well for simpler
cases (Figure 7) and sometimes does not work well for larger
cases (Figure 8). One problem is that we do not perform any
routing on the edges leaving the root. Branches in these separate
binary trees don’t know about each other and may overlap. In
Figure 8, the reason why there are so many edge crossings is that
our method assumes bounding boxes created by our spatial
clustering are disjoint. However, our clustering does not always
produce disjoint boxes, so we cannot always apply our heuristic.

Layering and branching structure. We have found that the
method for sharing substructure across flow maps that share a
common set of nodes works quite well. Figure 9 has an example
where two flow maps layered together share branching structure
to several nodes.

Linear or logarithmic display widths. In our initial maps we
used logarithms to map our data to a display width, because we
were working with network data where there were many orders of
magnitude in the data that we were plotting. However, for data
sets not dominated by a few high magnitude values, we find that
linear mappings draw the eye more. All the maps we
demonstrated in this paper use linear mappings.

6 RELATED WORK
A survey of American flow mapping history and techniques is

described in [15]. Flow map design is discussed in various
geography textbooks [6; 17]. Guidelines are given on legend
design and the use of a visual hierarchy to emphasize flow lines
over region boundaries. Ruggles and Armstrong [16] discuss a
framework for the cartographic visualization of networks. More
generally, map design is discussed in [11].

An alternative method of layout adjustment is described by
Lyons [10], who improves the distribution of nodes in a graph and
uses measures for graph similarity and distribution to decide if too
much distortion has occurred. Since this method tends to more
evenly distribute the nodes, it tends to blur out geographic
features, which is not as useful for flow maps.

Our edge routing technique is related to the ones found in the
graph drawing literature. Dobkin et al. [7] describes how to route
individual edges through a set of obstacles represented by
polygons. Unfortunately, they leave the question how to do this
for multiple edges open.

Our work is related to Agrawala and Stolte [1], who studied
hand-drawn route maps to understand the principles that made
them effective. They made use of intelligent distortion to produce
computer generated route maps.

Figure 8. Imports to China. A part of a flow map showing the top
200 countries from which China (bottom right) receives imports.
The thick line curving around the top are the imports from the USA
(not shown), which without edge routing would have gone straight
through the middle of the image. Edge crossings still occur in some
parts of the map, illustrating cases where our routing does not
work. For more information see the discussion in Section 5.

Figure 9. Branching Structure. A close-up of top 15 imports to
Spain and France. Notice the branching structure is shared across
different nodes, for example Spain, and France branch to the
Netherlands, Germany and the UK in the same way.

7 CONCLUSION AND FUTURE WORK
There are many areas of future work suggested by this project.

Global enforcement of horizontal and vertical ordering seems too
strict for flow maps. A better layout adjustment algorithm might
only enforce horizontal and vertical ordering within some 2D
local window of each node, so that things may be globally
distorted but locally consistent.

Although using binary clustering makes our spatial layout step
simpler, having non-binary splits could eliminate some clutter and
some loopy edges. Also, instead of our heuristic-based method for
edge routing, it may be possible to use simulated annealing to
adjust the edge positions.

We are also interested in the layout and display of data that
does not explicitly have a location. Although all of our work has
been on data sets with geographic locations, it may be interesting
to generate flow maps for more abstract sets of objects that have
no predefined positions but that can be grouped in other ways.

Now that we have an algorithm to generate flow maps
programmatically, we are interested in developing techniques to

interact with the data. We are interested in working with people
who analyze flow data to see how they use an interactive tool.

In this paper, we have presented a method to automatically
generate flow maps. We use distortion to ensure that our nodes are
well spaced but still preserve their relative positions to one
another. We merge edges based on their destinations using
hierarchical clustering. This allows flow maps with the same
input nodes to share branching structures. Finally we use the
spatial information given to us by the hierarchical clustering to do
edge routing to avoid edge crossings.

ACKNOWLEDGEMENTS
This work was supported by the Stanford Regional Visual

Analytics Center and the Department of Energy.

REFERENCES
[1] Maneesh Agrawala and Chris Stolte. “Rendering Effective Route

Maps: Improving Usability Through Generalization”. SIGGRAPH
2001. p. 241-250. 2001.

[2] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tolis. Graph Drawing. Prentice Hall, New Jersey, 1999.

[3] Richard A. Becker, Stephen G. Eick, and Allan R. Wilks.
Visualizing Network Data. IEEE Transactions on Visualization and
Computer Graphics, 1995.

[4] Kenneth C. Cox and Stephen G. Eick. Case Study: 3D Displays of
Internet Traffic. Proceedings of Infovis 1995.

[5] Kenneth C. Cox, Stephen G. Eick, and Taosong He. 3D geographic
network displays. SIGMOD Rec., ACM Press, 25:50-54, 1996.

[6] Borden D. Dent. Cartography : Thematic map design. McGraw-Hill.
New York. 1999.

[7] David P. Dobkin, Emden R. Gansner, and Eleftherios Koutsofios,
and Stephen C North,. Implementing a General-Purpose Edge Router
Springer-Verlag, 262-271. 1997.

[8] Jeffrey Heer, Stuart K. Card, and James A. Landay, prefuse: a toolkit
for interactive information visualization. CHI 2005, 421-430. 2005.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review
ACM Comput. Surv., ACM Press, 31:264-323 , 1999.

[10] Kelly A. Lyons, Cluster busting in anchored graph drawing IBM
Press, 7-17. 1992.

[11] Alan MacEachren. How maps work: Representation, Visualization,
and Design. Guilford Press. New York. 1995.

[12] Kazuo Misue, Peter Eades, Wei Lai, Kozo Sugiyama. Layout
adjustment and the Mental Map. Journal of Visual Languages and
Computing. 1995.

[13] D. Moran, M. Wackernagel, S. Goldfinger, and M. Murray.
International Ecological Trade Flows. Global Footprint Network.
www.footprintnetwork.org. 2005.

[14] T. Munzner and E. Hoffman and K. Claffy and B. Fenner.
Visualizing the global topology of the MBone. InfoVis 1996.

[15] M. Jody Parks. American Flow Mapping. Unpublished master’s
thesis. Atlanta: Georgia State University, Department of Geography.

[16] Amy J. Ruggles and Marc P. Armstrong, Toward a conceptual
framework for the cartographic visualization of network information.
Cartographica, 34:1-15. 1997.

[17] Terry A. Slocum. Thematic cartography and visualization. Prentice
Hall. New Jersey. 1999.

[18] Waldo Tobler. Experiments in Migration Mapping by Computer.
American Cartographer, 1987.

[19] Waldo Tobler. Movement Mapping.
http://csiss.ncgia.ucsb.edu/clearinghouse/FlowMapper. 2004.

[20] Edward R. Tufte. The Visual Display of Quantitative Information.
Graphics Press. Chesire, Conneticut. 2001.

[21] U.S. Census Bureau. 2003. County-to-County Migration Flow Files.
http://www.census.gov/population/www/cen2000/ctytoctyflow.html

Figure 11. An example of the top ASN (Autonomous Systems) that
a computer from our lab communicated with in one day. The
latitudes and longitudes for the ASNs were obtained by manually
looking for the city or state in which the ASN was registered.

Figure 10. California and New York migration. Another example
of how layering can be used in our system. The map shows the top
10 states that migrate to California and New York. Flow maps make
it easy to spot an interesting spatial pattern, namely that New York
tends to attract people from the East Coast, while California
residents come from more geographic regions in the United States.

