
liquid: Context-Aware Distributed Queries

Jeffrey Heer, Alan Newberger, Chris Beckmann, and Jason I. Hong

Group for User Interface Research, Computer Science Division
University of California, Berkeley

{jheer,alann,beckmann,jasonh}@cs.berkeley.edu

Abstract. As low-level architectural support for context-aware comput-
ing matures, we are ready to explore more general and powerful means of
accessing context data. Information required by a context-aware appli-
cation may be partitioned by any number of physical, organizational, or
privacy boundaries. This suggests the need for mechanisms by which ap-
plications can issue context-sensitive queries without having to explicitly
manage the complex storage layout and access policies of the underlying
data. To address this need, we have developed liquid, a prototype query
service that supports distributed, continuous query processing of context
data. This paper articulates the current need for such systems, describes
the design of the liquid system, and presents both a room-awareness ap-
plication and notification service demonstrating its functionality.

1 Introduction

One important aspect of the evolving ubiquitous computing vision is the develop-
ment of context-aware computing [11], in which sensor networks and other data
sources are leveraged to provide computing systems with an increased awareness
of a user’s physical and social environment. Sensed and inferred context data
can then be exploited to provide enhanced computing services [5].

Until recently, most technical work on context-aware computing has focused
on low-level architectural support [5,9,14], and has been primarily concerned
with the acquisition and storage of context data. For example, in Dey et al.’s
Context Toolkit (CTK), context widgets are associated with sensors and used
to collect and aggregate sensed data [5]. Client applications can then subscribe
to these widgets over the network to access and monitor context data. Hong’s
Context Fabric (Confab) [9] provides the abstraction of information spaces (in-
fospaces), logical storage units using the tuple space paradigm [6] that serve as
context repositories for individual entities in an environment (e.g., people, loca-
tions, and objects). Similar to the CTK, Confab users can set up subscriptions
to specific infospaces to monitor changes in context data (e.g., subscribing to a
room infospace to monitor its current occupants).

Although this work greatly supports the acquisition and organization of con-
text, the means of monitoring context can be much improved. Unfortunately,
the nature of context data provides some inherent challenges to achieving this.
First, we expect context data to be distributed—organized by a number of log-
ical and physical separations, including organizational and privacy boundaries.



Second, context is dynamic—objects are moved around, people walk in and out
of rooms, temperatures fluctuate, and activities begin and end.

Consider a scenario in which a student is busy working on a paper and
needs urgent feedback from their advisor. The student could use a context-aware
notification service to raise an alert when their advisor is in the same building
and interruptible [10]. Supporting such applications requires systems capable
of monitoring and dynamically re-routing connections to reflect changes in the
physical world.

Existing context-aware architectures support these requirements, providing
distributed storage and subscription services for context data, but they still place
an unnecessary burden on context-aware application developers. Using current
architectures, the previous notification scenario would require an application to
manage a host of subscriptions to remote repositories, maintain multiple network
connections, and perform all intermediate data processing. Duplicating this level
of work for all desired context-aware applications is simply unacceptable. Those
systems that do attempt to simplify context access, namely the CTK’s Situation
Abstraction [5], do so at the cost of centralizing all related context data, limiting
scalability. What is needed are general, adaptive, and decentralized infrastruc-
ture services that both scale to wide-level deployment and simplify application
design. As a result, we believe a distributed query service for context data is the
logical next step for context-aware infrastructures.

Many of the technologies needed for creating such a service have been well
investigated in the database literature. Distributed databases (e.g., [15,16]) sup-
port the separation of data across multiple nodes in a network. Recent work in
streaming databases [2,3,4,13] breaks the relatively static model of traditional
systems, viewing data as a (possibly infinite) sequence of items, and can thus
monitor data that changes over time. Finally, semi-structured databases (e.g.,
[12]) illustrate techniques for dealing with data of varying and dynamic struc-
ture. Although each of these individual areas have been well researched, the
needs of context-aware systems lie in their intersection, which unfortunately has
yet to be fully realized in the database community.

To address these needs, we built liquid, a query service that supports context-
aware applications. Building on emerging work in the field of streaming databases,
liquid supports distributed, decentralized query processing over continuously
changing context data, stringing queries across various context repositories, re-
routing queries as changing context dictates, and providing streaming results
back to query issuers. liquid not only collects results from distributed context
repositories, but distributes the actual processing of the query across the net-
work, decentralizing query processing and improving scalability. As such, liquid
helps to fill a current void in the design space of both database systems and
context-aware computing infrastructures.



2 liquid Design and Implementation

The liquid query service is built atop an existing context-aware storage infras-
tructure, the Context Fabric (Confab) [9]. In this section we describe the design
of Confab as relevant to liquid, and present the design of liquid itself.

2.1 Context Fabric

The Context Fabric is a distributed context-aware infrastructure with services
to support the acquisition and retrieval of context data. Using Confab, peo-
ple, places and things (entities) are assigned network-addressable logical storage
units called Information Spaces (infospaces) that store context data. Sources of
context data, such as sensor networks, can populate infospaces to make their
data available for use and retrieval. Applications retrieve and manipulate infos-
pace data to accomplish context-aware tasks. Infospaces provide an abstraction
with which to model and control access to context data. Infospaces can be both
distributed across a network or managed on a centralized server. We expect
some combination of both to be typical of a Confab deployment. Confab is im-
plemented in Java, using HTTP for network communication.

The basic unit of storage in an infospace is the context tuple (tuple). Tuples
may contain arbitrary data, including descriptions of other entities related to
the original, containing infospace. Elements common to all tuples are type, a
textual name describing the relationship of a tuple to the containing infospace’s
entity; one or more values, each identified by name; and an optional entity-
link denoting the address of an infospace for an entity described by the tuple.
Such tuples’ entity-link elements refer to the infospace of the other entity. For
instance, the infospace for a specific room may contain numerous tuples of type
’occupant’, each with values denoting a name and email of an occupant of the
room and an entity-link referring to the infospace that hold tuples on behalf of
that occupant. Context tuples are represented externally as XML documents,
and are the basic data unit processed by liquid queries.

2.2 liquid

liquid is a query processing service, implemented in Java, that deploys on top of
the Context Fabric. The processing of a liquid query involves receipt of the query
over the network, translation of the received query into a query plan, execution
of that plan (including, if necessary, the dispatch of sub-queries to remote query
processing units), and the return of any results to the query issuer. Both queries
and query results are represented in XML and communicated over HTTP.

A core concept of liquid is the entity type path, which is illustrated in Figure
1. A type path specifies a tuple to be retrieved at the end of a sequence of
infospaces, each infospace being specified by its type relation to the infospace
prior in the sequence. For example, to get the occupants of the room you’re
currently in, the entity type path of this data, relative to your own personal
infospace, would be “location.occupant”. This scheme, similar in spirit to type



Fig. 1. The evaluation of an entity type path relative to a root infospace. This path
returns the specific locations of people in the same building as the query issuer.

paths used in semi-structured databases like [12], specifies data across a logically
separate and possibly distributed set of storage repositories.

liquid queries are issued in a declarative format (currently in XML) which
specifies the tuples to be retrieved as a set of type paths. This format organizes
the query into partitions that can be serviced at individual infospaces. For in-
stance, a query retrieval path of “location.occupant.age”, designed to retrieve
the ages of people in the same room as the query issuer, would be split into 3
partitions: one retrieving “age” tuples, which is contained within another parti-
tion retrieving “occupant.age” tuples, which is in turn contained in a partition
retrieving “location.occupant.age” tuples. Each partition can also contain con-
ditions that tuples in the retrieval path must satisfy. When queries are received
by a liquid node, the system determines which partition must be executed lo-
cally, and uses it to generate a query plan. A query plan is a structured tree
of operators that perform query processing and partition forwarding to remote
infospaces. liquid operators use the standard iterator model of query processing.
Interested readers are referred to [7] for an introduction to these concepts.

Query execution consists of the management and evaluation of the generated
query plans. Queries are first registered with the query execution manager, which
holds a registry of live queries and oversees query scheduling. Upon receiving a
query, the execution manager associates the query with its own executor, an ob-
ject which oversees the evaluation of a single query, requesting new results from
the query operator tree and returning them to the query issuer. The executor
returns results to an issuer through a callback provided by liquid’s network com-
munication layer. Our current implementation uses a single-thread of execution
per query, which the execution manager oversees using a thread pool.

The basic unit of query processing passed between operators is the result item.
The result item is a time-stamped collection of context tuples, each indexed by
their entity type path. Result items also maintain a status flag that indicates



Fig. 2. An example liquid query operator tree. Dotted arrows indicate remote queries.

if an item has been inserted, deleted, updated, exited, or expired. Inserted or
deleted items have either been added or removed from the scope of the query
(e.g., a person walks into a monitored room, and then walks out). Updated and
exited items are those whose content has been updated, either in such a way
that the item still meets the query conditions (updated) or that it no longer does
(exited). Finally, expired items are those that the system can no longer track
due to bounded resources (see the discussion on windows below).

2.3 Operators and Windows

Currently, liquid supports the traditional database operators of selection (σ),
projection (π), and joins (on). We also introduce two new operators specific to
liquid: local (λ) operators, which are responsible for interfacing to a local in-
fospace, and external (χ) operators, which are responsible for managing and
dispatching remote sub-queries to other liquid nodes. The operator tree also fea-
tures windows, caches which keep a history of tuples while maintaining bounded
operator state. Figure 2 shows an example of an actual liquid operator tree.

Windows provide operator state within bounded resources, akin to synopses
in [13] and state modules (SteMs) in [2]. liquid windows support result item
insertion and removal, item searching, and automatic item eviction. Windows
issue callbacks to their associated operators to inform them of eviction events.
This functionality is used to keep query issuers apprised of which results are
being actively monitored and which have expired.

liquid employs a number of operators to service queries. Local (λ) operators
are responsible for retrieving context data from underlying infospaces. The λ
operator monitors the local infospace for tuple insertions, deletions, and updates.
A λ operator also maintains a window to keep a history of retrieved tuples,



primarily to handle exited tuples. Items evicted from the window are flagged as
expired and added to the queue of items to be passed up the operator tree.

External (χ) operators retrieve data from remote infospaces by querying
other liquid nodes. Result items are pulled from a child operator, and the entity-
links of these items are used to issue queries to liquid instances at other infos-
paces. The query results are then streamed back, enqueued into the χ operator
through a callback from the network layer. The operator keeps a registry of run-
ning queries, indexed by the result item that spawned it. Updated items arriving
from the child operator may cause running queries to be canceled and then re-
issued as necessary. Deleted, exited, and expired items cause the corresponding
queries to be canceled. Accordingly, χ operators maintain their own window,
allowing the results from canceled queries to be effectively “recalled” by passing
the proper deleted, exited, or expired items up the tree.

Selection (σ) operators filter items based on a given condition, while projec-
tion operators (π) collapse results items by removing unnecessary context tuples.
These operators are stateless and hence quite easy to implement. Join (on) oper-
ators evaluate two incoming streams and merge the contents of two result items
if they meet a specified condition. Each stream has an associated window, over
which the join is computed using a variant of the block-ripple join [8]. Join oper-
ators have also been designed to carefully manage the cases when deleted, exited,
and expired items must be propagated up the operator tree. This results in the
desirable property that query issuers are guaranteed to be notified whenever a
result item goes “stale”.

3 Applications

As a first evaluation of the liquid system and its impact on context-aware applica-
tion design, we’ve built a simulation system and two applications showcasing the
system’s functionality. We are in the process of setting up instrumented spaces
in which to explore real-world context-aware scenarios, but in the meantime we
have built a location simulator to support system testing and application design.
The system provides a complete model of our building on our campus, and repre-
sents any number of people and objects located within the building. The system
allows users to simulate movement of people and objects through a web-based
interface (Figure 3), or can be programmed to automatically simulate activity.
The simulator is a surrogate for an underlying sensing infrastructure, populating
and updating infospaces as simulated context changes over time.

3.1 Application 1: Co-occupant Awareness

We built the first application to provide augmented awareness within a room or
space. For a given person, the application provides the e-mails and webpages (if
available and allowed by privacy policies) for all people currently in the same
room as the query issuer. As people enter and exit the room, this result is
automatically updated, and as the query issuer moves from place to place, the



Fig. 3. Application screenshots of the location simulator (left), the room awareness
application (center), and the notification service interface (right).

query is automatically re-routed to the correct infospace for the new location.
This application showcases liquid’s ability to both handle distributed data (i.e.,
across infospaces for both people and locations) and respond to the dynamic
nature of context. The user interface for this application is shown in Figure 3.

3.2 Application 2: Notification Service

Next, we built a context-aware notification service, in the spirit of CybreMinder
[5], that allows the user to specify conditions of which they would like to be
notified. This specification is performed using the interface in Figure 3, which
currently shows a running query for the “advisor hunting” scenario mentioned
in the introduction. The application issues user-provided queries and provides
notification to the user as query results arrive. The processing of the notification
conditions is completely provided by the liquid infrastructure (e.g., by comput-
ing joins), leaving the application developer responsible only for generating the
appropriate queries and displaying the results. The evaluation of these queries
is dispersed throughout the infrastructure, supporting scalability and reuse of
computation through both caching and sub-plan sharing.

4 Future Work and Conclusion

Despite the success of our system, there is still much work to be done. First,
our modeling scheme of context data is preliminary. We are in the process of
determining the right balance between simplicity and expressive power in how
context-aware architectures model the surrounding world. Next, a more natural
query language is needed to further simplify the burden of application design-
ers. Privacy issues with context data are also a serious concern. While access
control is handled by the underlying Context Fabric, liquid will need to consider
authentication and encryption in the evaluation of queries. Another major area



is optimization and evaluation, including query scheduling and parallelism, sub-
plan sharing, window size adjustments [13], and dynamic operator optimization
[1,2]. An important benefit of incorporating query processing into context-aware
computing systems is the potential for improved efficiency of the infrastructure,
allowing informed resource management and avoiding replicated work. It is our
hope that by identifying these system needs, the ubicomp and database fields
might inform each other, providing both new challenges and application domains
for database researchers and new systems and techniques for the designers of
ubiquitous computing environments.

In conclusion, this paper presented liquid, a continuous query processing en-
gine for supporting context-aware applications. To this aim, liquid supports per-
sistent, streaming queries over distributed data repositories, and dynamic query
re-routing in response to changing context. Current context-aware computing
architectures do not efficiently support these services, often relying on context-
aware application designers to implement them on their own. liquid hopes to
simplify and enhance the creation of context-aware applications by moving these
services into the available infrastructure.

5 Acknowledgments

We are indebted to the guidance and insights of Anind Dey, Eric Brewer, James Landay,

and Jennifer Mankoff. This work was supported by an NSF ITR for context-aware

computing. The first author was supported by an NDSEG fellowship.

References

1. R. Avnur and J. M. Hellerstein. “Eddies: Continuously Adaptive Query Processing.” In SIGMOD
2000.

2. S. Chandrasekaran, et al. “TelegraphCQ: Continuous Dataflow Processing for an Uncertain
World.” CIDR 2003.

3. J. Chen, D. DeWitt, F. Tian, and Y. Wang. “NiagaraCQ: A Scalable Continuous Query System
for Internet Databases.” In SIGMOD (2000).

4. M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and S. Zdonik.
“Scalable Distributed Stream Processing.” CIDR 2003.

5. A. K. Dey. “Providing Architectural Support for Building Context-Aware Applications.” Ph.D.
thesis, December 2000, College of Computing, Georgia Institute of Technology.

6. D. Gelernter. “Generative communication in Linda.” ACM Transactions on Programming Lan-
guages and Systems. 7(1), 1985.

7. G. Graefe. “Query Evaluation Techniques for Large Databases.” ACM Computing Surveys 25
(2): 73-170, 1993.

8. P. J. Haas and J. M. Hellerstein. “Ripple joins for online aggregation.” In A. Delis, C. Faloutsos,
and S. Ghandeharizadeh, editors, SIGMOD 1999.

9. J. I. Hong. The Context Fabric. http://guir.berkeley.edu/cfabric.
10. S. E. Hudson, J. Fogarty, et al. “Predicting Human Interruptibility with Sensors: A Wizard of

Oz Feasibility Study.” CHI 2003.
11. Human-Computer Interaction Journal: Special Issue on Context-Aware Computing, Vol. 16, No.

2-4, 2001.
12. J. McHugh, et al. “Lore: A Database Management System for Semistructured Data.” SIGMOD

Record, 26(3):54-66, September 1997.
13. R. Motwani, et al. “Query Processing, Resource Management, and Approximation in a Data

Stream Management System.” CIDR 2003.
14. B. Schilit. “System architecture for context-aware mobile computing.” Unpublished doctoral

dissertation, Columbia University, 1995.
15. M. Stonebraker, et al. “Mariposa: a wide-area distributed database system.” VLDB Journal 5,

1 (Jan. 1996), p. 48-63.
16. R. Williams, et al. “R*: An Overview of the Architecture.” Technical Report RJ3325, IBM

Research Lab, San Jose, CA, December 1981.

http://guir.berkeley.edu/cfabric

	liquid: Context-Aware Distributed Queries
	Jeffrey Heer, Alan Newberger, Chris Beckmann, Jason I. Hong (University of California, Berkeley)

