
Visualizing Collaboration and Influence in the

Open-Source Software Community

Brandon Heller, Eli Marschner, Evan Rosenfeld, Jeffrey Heer
Stanford University

{brandonh, emrosenf}@stanford.edu, {eli,jheer}@cs.stanford.edu

ABSTRACT
We apply visualization techniques to user profiles and repository
metadata from the GitHub source code hosting service. Our mo-
tivation is to identify patterns within this development commu-
nity that might otherwise remain obscured. Such patterns include
the effect of geographic distance on developer relationships, social
connectivity and influence among cities, and variation in project-
specific contribution styles (e.g., centralized vs. distributed). Our
analysis examines directed graphs in which nodes represent users’
geographic locations and edges represent (a) follower relationships,
(b) successive commits, or (c) contributions to the same project. We
inspect this data using a set of visualization techniques: geo-scatter
maps, small multiple displays, and matrix diagrams. Using these
representations, and tools based on them, we develop hypotheses
about the larger GitHub community that would be difficult to dis-
cern using traditional lists, tables, or descriptive statistics. These
methods are not intended to provide conclusive answers; instead,
they provide a way for researchers to explore the question space
and communicate initial insights.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Programming teams;
H.5.3 [Information Interfaces and Presentation]: Group and Or-
ganization Interfaces—Computer-supported cooperative work; K.1
[Computing Millieux]: The Computer Industry

General Terms
Experimentation, Measurement

Keywords
Visualization, mapping, data exploration, open source, collabora-
tion, GitHub, geoscatter, social graph

1. INTRODUCTION
Looking into source code repository data to discover patterns is

by no means a new phenomenon. Early work looked deep into sin-
gle repositories, hoping to use the knowledge uncovered to inform
and improve software practices. Examples include studies of code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’11, May 21–22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00.

decay [9], taxonomies of commits [14], and tools to help devel-
opers write better code by identifying changes that may have been
missed and suggesting opportunities for refactoring [20]. Others
have used visualization techniques to make sense of and support
exploration of code structure, change histories, and social relation-
ships [3, 8, 11, 19], as well as animate a project’s history [6, 15].

As centralized software hosting services such as SourceForge,
Google Code, and GitHub began to appear, the scope of analy-
sis expanded to multiple repositories. With data from a few hun-
dred thousand developers, up from a few hundred, the set of ques-
tions we can ask changes. One natural question is “Where are
the developers?”; multiple studies have looked into developer geo-
distribution [7]. One study [12] investigated demographics and
economic influence, correlating developer data with other sources
to show the geographic distribution of developers by country, both
in raw form and scaled to internet usage and GDP/capita. A similar
study [10] combined email, time zone, and IP address information,
along with mailing-list message data, to view the world-wide al-
location of open source activity. In the study closest to ours, the
authors focus on continent-level comparisons and filtering for ac-
curate geolocations [16], concluding that North America receives
disproportionately more attention and contributions.

Our preferred questions are why and how, in addition to where.
With enough data, we can start to examine higher-level aspects of
collaboration, like coding relationships, social relationships, and
the balance of influence. To form hypotheses for these questions,
and to consider how the answers vary by project and over time, we
apply visualization techniques to data collected from GitHub. We
employ three techniques: linked geo-scatter maps depicting inter-
actions among locales, small multiple displays combining multi-
ple views to enable visual comparisons, and matrix diagrams that
reduce clutter to reveal pairwise relationships among metropolitan
areas. After introducing each technique, we discuss observations
uncovered from the visualization and future directions for analysis.

Our application of these tools reveals patterns that communicate
the underlying data more directly than purely statistical analysis.
These methods make the data more accessible to a wider audience
of both researchers and developers. They augment, but do not re-
place, analytic approaches.

2. DATA
We use data collected from GitHub [1], a hosted source code

repository with an integrated social network and detailed user pro-
files. This data set includes the complete social graph of 500,000
follow links as well as over 1,000,000 commits and 50,000 users.

Data Collection - GitHub provides public access to its social
graph, source repository content, and user profiles. Fortunately,
a large fraction of users provide a location in their profile, which
we can turn into geographic coordinates using a geocoding API

Figure 1: Build-Upon Graph for October 2010.

like PlaceFinder [2]. Location strings with single geocode results
are considered valid and are used, whereas those with none, or
more than one (such as the case of identically-named cities) are
ignored. GitHub location strings were also geocoded by Takhteyev
and Hilts, who improved accuracy with a string-parsing and val-
idation approach [16]. Like them, we found many examples of
ambiguous or non-specific locations (e.g., “Earth”).

To acquire this data, we built a custom GitHub crawler. The
crawler uses single-letter queries to build a seed group of user-
names, then fetches the set of repositories watched by each user
in this group. For each repository, we extract the owner, collab-
orator, and contributor usernames, plus branch names. New user-
names help to find new repositories, while branch names are used
to fetch commit metadata. Using this method, the crawler uncov-
ered 40,860 code repositories, representing 33,388 unique project
names and 1,219,872 individual commits.

In addition to crawled data, we use the complete GitHub user fol-
lower graph from Jan 19, 2011. This graph includes 452,248 links
connecting 106,247 unique users, 47% (49,500) of which could be
geocoded with the PlaceFinder API. Given GitHub’s total member-
ship of approximately 550,000 users, the majority of users must be
disconnected from the follow graph, due to not using the service
after registration or following only repositories and not other users.

Graphs - We constructed three types of graphs from our col-
lected data. All have users as nodes, but the meaning of edges
varies. These graphs include (1) the build-upon graph: if user B
creates a commit that immediately succeeds user A’s, then we add
a link from B to A to represent the build-upon relationship; (2)
the follower graph: on GitHub, following a user causes their up-
dates (commits, forks, etc.) to appear in your news stream; and
(3) the contributor graph: contributors have either (a) pushed code
directly into a repository or (b) had it pulled in by a project main-
tainer. Other link types to consider in future work include develop-
ers watching the same repository, forking a repository, and modify-
ing the line, file, or block that another developer last modified. For
space reasons, we show only graphs generated from types 1 and 2.

3. GEO-SCATTER MAP WITH LINKS
A linked geo-scatter map (a node/link diagram overlaid on a

map) is a natural fit for graphs with geo-located nodes. To show
build-upon relationships, we connect the points representing the lo-
cations of a parent commit’s user and its child commit’s user with
a semi-transparent line, as shown in Figure 1. As more of these
build-upon connections are found between nearby locations, the
lines become increasingly opaque. The number of commits made
at a location is represented by a circle, log-scaled to highlight lo-
cation diversity at the expense of comparison accuracy. For a more

detailed discussion of the visual encoding choices in the geoscat-
ter map style and their tradeoffs, we refer the reader to [13]. This
same general approach has recently been used to visualize Face-
book friendships and professional citation networks [4, 5].

First, we see heavy development occurring between the US and
Europe along an “Atlantic rail”, which may be an artifact of high
levels of Internet connectivity and/or cultural overlap between those
regions. We also see that South American countries (Brazil, Ar-
gentina, Uruguay) connect more with Europe than North America;
is this due to language effects? Links to Asia, South America and
Africa are less prevalent. Perhaps development using GitHub is
less prevalent on those continents? Alternatively, perhaps devel-
opers on those continents are less willing to advertise their where-
abouts for cultural, political, or other reasons. Or perhaps there are
more widely accepted alternatives to GitHub? The strange spot in
the southern Atlantic is an erroneous geocoding of "New Zealand",
showing visualization’s power to expose data flaws.

4. SMALL MULTIPLES
To add depth to our analysis we next generate a matrix of maps,

where each map is filtered by time range and project. This vi-
sual technique of repetition is called small multiples: “At the heart
of quantitative reasoning is a single question: Compared to what?
Small multiple designs, multivariate and data bountiful, answer di-
rectly by visually enforcing comparisons of changes” - E. Tufte [17].
Figure 2 represents five data dimensions: (1) projects: one per row,
(2) quarterly time periods: one per column, (3) developer loca-
tions: coordinates of nodes on each mini map, (4) commits at each
location: size of nodes, and (5) collaboration between developers:
edges between nodes.

We see a significant contrast between projects with distributed
development patterns, versus those that are more centralized. Look-
ing at centralized examples, we find that the visual hub corresponds
to project creators or maintainers. For example, the primary de-
veloper on the Redis project, Salvatore Sanfilippo, lives in Sicily,
which is evident from the concentration of links leading there, as
seen in Figure 3(a). The Git project shows a concentration around
LA (Figure 3(c)), where its maintainer Junio C. Hamano lives.

Some projects’ patterns stand out because they hint at unfore-
seen influences, and others because they buck established trends.
Figure 4(a) highlights developer distribution patterns for the Home-
brew project (a software package manager for Mac OS X) that
might reflect where Apple has more market share. Figure 4(b)
shows that Mono (an open implementation of the .NET platform)
is characterized by distinctly distributed development, with a sur-
prising dearth of developers on the west coast of the US.

5. MATRIX DIAGRAMS
Linked geo-scatter maps help to identify patterns of interest in an

intuitive manner. However, more subtle patterns among the connec-
tions may be hard to discern. Overlapping edges obscure underly-
ing details, and accurate quantitative comparisons become difficult,
if not impossible. We now switch contexts to the GitHub follower
graph and examine social links using matrix diagrams, a more
abstract visualization technique that reduces clutter and helps to
perceive edge metrics, using visual encodings inspired by the Hon-
eycomb project [18]. Matrix diagrams are grids in which each cell
represents a link metric, while rows and columns represent nodes.

Our metrics include (1) followers: the number of follow links, (2)
asymmetry: the relative difference between follower totals in each
direction, and (3) deviation from expected: the relative difference
of actual link totals compared to those expected from sampling the
node distribution at random. Figure 5 shows these matrix diagrams.

git
distributed version
control

progit
Pro Git book
content

node
evented I/O for V8
JavaScript

homebrew

rails
Ruby on Rails
Framework

rails-i18n
Rails
internationalization

sinatra
light Ruby framework

perl
Programming
language

 Jan-Apr May-Aug Sept-Dec Jan-Apr May-Aug Cumulative
’09 ’10

Figure 2: Map matrix showing collaboration maps of different projects over quarterly time periods, with a cumulative view at right.

(a) Redis (b) Ruby (c) Git (d) Node
Figure 3: Developer distribution and collaboration patterns for projects with a central maintainer, whose location is pronounced.

(a) Homebrew (b) Mono (c) Rails
Figure 4: Developer distribution and collaboration patterns for different projects.

San Francisco

Sa
n

Fr
an

ci
sc

o

Los Angeles

Lo
s

An
ge

le
s

Portland

Po
rtl

an
d

Seattle

Se
at

tle

Chicago

C
hi

ca
go

Toronto

To
ro

nt
o

New York

N
ew

 Y
or

k

Tokyo

To
ky

o

London

Lo
nd

on

Berlin

Be
rli

n

Paris

Pa
ris

Sydney

Sy
dn

ey

< 25.0
[25.0, 50.0)
[50.0, 75.0)
[75.0, 100.0)
[100.0, 125.0)
[125.0, 150.0)
[150.0, 175.0)
[175.0, 200.0)
> 200.0

(a) Followers: follow link totals between
areas, sorted by geographic proximity. Col-
umn nodes follow row nodes.

Chicago

C
hi

ca
go

San Francisco

Sa
n

Fr
an

ci
sc

o

Seattle

Se
at

tle

Portland

Po
rtl

an
d

London

Lo
nd

on

New York

N
ew

 Y
or

k

Sydney

Sy
dn

ey

Los Angeles

Lo
s

An
ge

le
s

Toronto

To
ro

nt
o

Berlin

Be
rli

n

Paris

Pa
ris

Tokyo

To
ky

o

< -1.6
[-1.6, -1.2)
[-1.2, -0.8)
[-0.8, -0.4)
[-0.4, 0.4)
[0.4, 0.8)
[0.8, 1.2)
[1.2, 1.6)
> 1.6

(b) Asymmetry: relative following link vs
followed links, sorted from most to least in-
fluential. Positive (row, col) values indicate
that a row is more influential (i.e., column
follows row more often).

San Francisco

Sa
n

Fr
an

ci
sc

o

Los Angeles

Lo
s

An
ge

le
s

Portland

Po
rtl

an
d

Seattle

Se
at

tle

Chicago

C
hi

ca
go

Toronto

To
ro

nt
o

New York

N
ew

 Y
or

k

Tokyo

To
ky

o

London

Lo
nd

on

Berlin

Be
rli

n

Paris

Pa
ris

Sydney

Sy
dn

ey

< -4.0
[-4.0, -3.0)
[-3.0, -2.0)
[-2.0, -1.0)
[-1.0, 1.0)
[1.0, 2.0)
[2.0, 3.0)
[3.0, 4.0)
> 4.0

(c) Deviation from expected: relative ac-
tual links vs. expected links, assuming ge-
ography had no effect, sorted by geographic
proximity. Positive (row, col) values indi-
cate that a column follows a row more than
expected.

Figure 5: Matrix diagrams comparing major metropolitan areas on various metrics of the GitHub user-follow graph.

To employ more links to make more statistically valid pairwise
comparisons, we clustered the graph by metro area, aggregating
users within a radius of each city. For example, the label San Fran-
cisco includes the Bay Area cities of Oakland and San Jose. Look-
ing at Figure 5(a), the most prominent visual feature is the diago-
nal, suggesting that most collaboration occurs between developers
near each other. We also see distinct horizontal and vertical bands
for cities with large high-tech industries, such as Chicago, Seattle,
New York, London, and especially San Francisco, as expected.

The total number of links to and from a city is a useful start-
ing point for comparison, but taken alone it can fail to reveal more
subtle patterns. We next look at follower asymmetry by comparing
counts of in- versus out- links. If the number of in- and out-links
are the same between nodes, the asymmetry is zero. For twice as
many in- as out-links, the asymmetry is +1, and for the reverse, -1.

The diagram in Figure 5(b) is ordered by decreasing asymmetry,
starting at the top left. In this ordering, Chicago comes before San
Francisco, indicating that developers in its metropolitan area are
followed more extensively than they follow people in other places.
This may have something to do with the fact that the Ruby on Rails
project, one of the first and most prominent GitHub-hosted projects,
was started in Chicago. We also see some outlier patterns, partic-
ularly for Paris, whose developers seem to mostly follow rather
than be followed, except when it comes to their relationships with
developers in Sydney, Berlin, and especially Tokyo. This may in-
dicate that there is a popular project, influential developer, or niche
community centralized in Paris that many Australian, German and
Japanese developers work with. The links between Tokyo and Paris
constitute a noticeable outlier, but one based on few links (4 vs 14).

Now, we seek a different insight: which cities are more or less
influential when compared to a baseline prediction that is indepen-
dent of geographic proximity? We use knowledge of how many
users are in each city, along with the total number of that city’s
links, to predict links – by selecting nodes from the real-world
graph to connect with each other, uniformly and at random. Ge-
ography has no effect on the structure of this graph; we use it to
compute expectations for the connectivity between each city pair.

The expected links diagram in Figure 5(c) shows the difference
between the computed link-count expectations and observed counts.
It reinforces observations made from the other two matrix diagrams
by showing that Paris and Tokyo each have either many fewer in-
coming “followed” links than would be expected, or many more
outgoing “following” links, and that San Francisco consistently has
a surplus of “followed” links. The cluster of blue cells in the upper-
left corner suggests that higher-than-average follow totals occur be-
tween developers in the top US cities, though it may be due to many
of these cities being geographically close, on the west coast. By
comparison, the top European cities show fewer unexpected links,
which may suggest a community with a higher degree of internal
balance, or one with less interest in collaboration.

6. DISCUSSION
Intriguing patterns emerge when we apply visualization tech-

niques to source repository data. The resulting displays enable
rapid hypothesis formation and are accessible to a wide audience.
However, it is important to consider the incomplete, opt-in nature
of the data source; visual patterns do not conclude, but instead point
to aspects of data worthy of further, more traditional analysis.

We invite the reader to explore our collected data and find their
own patterns – using the same interactive web-based visualiza-
tion that helped the authors – at: http://gothub.stanford.edu. Users
can filter by project name, date range, and geographic region. A
play/pause button animates the history of a project, adding nodes

and links as they appear. In fact, each map in this paper is sim-
ply a screenshot from the interactive website. Full source code is
available, naturally, on GitHub: github.com/emarschner/gothub

7. ACKNOWLEDGEMENTS
We wish to thank the GitHub team for providing open access to

their repository data. The visualizations in this work were made
possible by Protovis, Polymaps, and CloudMade.

8. REFERENCES
[1] GitHub API. http://develop.github.com.
[2] Yahoo! PlaceFinder API.

http://developer.yahoo.com/geo/placefinder/.
[3] T. Ball and S. Eick. Software visualization in the large.

Computer, 29(4):33–43, 2002.
[4] O. H. Beauchesne. Map of scientific collaboration.

http://olihb.com/2011/01/23/map-of-scientific-collaboration-
between-researchers/.

[5] P. Butler. Visualizing friendships.
https://www.facebook.com/note.php?note_id=469716398919.

[6] A. Caudwell. Gource software version control visualization.
http://code.google.com/p/gource/.

[7] F. Cuny. Github communities poster.
http://fr.linkfluence.net/wp-content/misc/github.pdf, 2010.

[8] C. De Souza, J. Froehlich, and P. Dourish. Seeking the
source: software source code as a social and technical
artifact. In SIGGROUP Conference on Supporting Group
Work, November, pages 06–09. ACM, 2005.

[9] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus. Does
code decay? assessing the evidence from change
management data. IEEE Transactions on Software
Engineering, 27(1):1–12, 2002.

[10] A. Freytag, S. von Engelhardt, and C. Schulz. On the
Geographic Allocation of Open Source Software Activities.
Jena Economic Research Papers in Economics, 2010.

[11] J. E. Froehlich. Unifying artifacts and activities in a visual
tool for distributed software teams. Master’s thesis,
University of California, Irvine, 2004.

[12] J. Gonzalez-Barahona et al. Geographic origin of libre
software developers. Information Economics and Policy,
20(4):356–363, 2008.

[13] B. Heller, E. Marschner, and E. Rosenfeld. Geocoding github
project report. https://graphics.stanford.edu/wikis/cs448b-
10-fall/FP-RosenfeldEvan.

[14] A. Hindle, D. German, and R. Holt. What do large commits
tell us?: a taxonomical study of large commits. In Mining
software repositories, pages 99–108. ACM, 2008.

[15] M. Ogawa. code_swarm: An experiment in organic software
visualization. http://www.michaelogawa.com/code_swarm/.

[16] Y. Takhteyev and A. Hilts. Investigating the Geography of
Open Source Software through Github.

[17] E. Tufte. Envisioning Information. 1990.
[18] F. van Ham, H. Schulz, and J. Dimicco. Honeycomb: Visual

analysis of large scale social networks. Human-Computer
Interaction–INTERACT 2009, pages 429–442, 2009.

[19] F. Van Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change history.
Software Maintenance, 2004.

[20] T. Zimmermann et al. Mining version histories to guide
software changes. IEEE Transactions on Software
Engineering, pages 429–445, 2005.

